On a Gradient Flow with Exponential Rate of Convergence

被引:2
|
作者
Khatibzadeh, Hadi [1 ]
机构
[1] Univ Zanjan, Dept Math, Zanjan, Iran
关键词
Rate of convergence; Convex function; Subdifferential; Convex minimization problem; Evolution equation; Gradient flow; ASYMPTOTIC-BEHAVIOR; BOUNDED SOLUTIONS;
D O I
10.1007/s10957-012-0189-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present an evolution equation governed by a maximal monotone operator with exponential rate of convergence to a zero of the maximal monotone operator. When the maximal monotone operator is the subdifferential of a convex, proper, and lower semicontinuous function, we show that the trajectory of solutions of the evolution equation converges exponentially to the minimum value of the convex function.
引用
收藏
页码:141 / 147
页数:7
相关论文
共 50 条
  • [41] ON THE CONVERGENCE RATE OF INCREMENTAL AGGREGATED GRADIENT ALGORITHMS
    Gurbuzbalaban, M.
    Ozdaglar, A.
    Parrilo, P. A.
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) : 1035 - 1048
  • [42] On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
    Mroueh, Youssef
    Truyen Nguyen
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [43] Uniting Nesterov's Accelerated Gradient Descent and the Heavy Ball Method for Strongly Convex Functions with Exponential Convergence Rate
    Hustig-Schultz, Dawn M.
    Sanfelice, Ricardo G.
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 959 - 964
  • [44] Exponential convergence flow control model for congestion control
    Liu, Weirong
    Yi, Jianqiang
    Zhao, Dongbin
    Wen, John T.
    PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, 2006, : 156 - 161
  • [45] Exponential Convergence Flow Control Model for Congestion Control
    Liu, Weirong
    Yi, Jianqiang
    Zhao, Dongbin
    Wen, John T.
    INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 832 - 841
  • [46] Exponential convergence of a gradient descent algorithm for a class of recurrent neural networks
    Bartlett, P
    Dasgupta, S
    38TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, PROCEEDINGS, VOLS 1 AND 2, 1996, : 497 - 500
  • [47] Stochastic Gradient Descent with Exponential Convergence Rates of Expected Classification Errors
    Nitanda, Atsushi
    Suzuki, Taiji
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [48] Global exponential stability for delayed cellular neural networks and estimate of exponential convergence rate
    Zhang Qiang
    Advanced Design Technology Center
    School of Management
    Journal of Systems Engineering and Electronics, 2004, (03) : 344 - 349
  • [49] On the fast convergence of random perturbations of the gradient flow
    Yang, Jiaojiao
    Hu, Wenqing
    Li, Chris Junchi
    ASYMPTOTIC ANALYSIS, 2021, 122 (3-4) : 371 - 393
  • [50] Exponential decay for sc-gradient flow lines
    Albers, Peter
    Frauenfelder, Urs
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2013, 13 (02) : 571 - 586