In situ doping of catalyst-free InAs nanowires

被引:27
|
作者
Ghoneim, Hesham [1 ]
Mensch, Philipp [1 ]
Schmid, Heinz [1 ]
Bessire, Cedric D. [1 ]
Rhyner, Reto [2 ]
Schenk, Andreas [2 ]
Rettner, Charles [3 ]
Karg, Siegfried [1 ]
Moselund, Kirsten E. [1 ]
Riel, Heike [1 ]
Bjoerk, Mikael T. [1 ]
机构
[1] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Integrated Syst Lab, CH-8092 Zurich, Switzerland
[3] IBM Res Almaden, San Jose, CA 95120 USA
关键词
D O I
10.1088/0957-4484/23/50/505708
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report on in situ doping of InAs nanowires grown by metal-organic vapor-phase epitaxy without any catalyst particles. The effects of various dopant precursors (Si2H6, H2S, DETe, CBr4) on the nanowire morphology and the axial and radial growth rates are investigated to select dopants that enable control of the conductivity in a broad range and that concomitantly lead to favorable nanowire growth. In addition, the resistivity of individual wires was measured for different gas-phase concentrations of the dopants selected, and the doping density and mobility were extracted. We find that by using Si2H6 axially and radially uniform doping densities up to 7 x 10(19) cm(-3) can be obtained without affecting the morphology or growth rates. For sulfur-doped InAs nanowires, we find that the distribution coefficient depends on the growth conditions, making S doping more difficult to control than Si doping. Moreover, above a critical sulfur gas-phase concentration, compensation takes place, limiting the maximum doping level to 2 x 10(19) cm(-3). Finally, we extract the specific contact resistivity as a function of doping concentration for Ti and Ni contacts.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Catalyst-free growth of GaN nanowires
    K. A. Bertness
    N. A. Sanford
    J. M. Barker
    J. B. Schlager
    A. Roshko
    A. V. Davydov
    I. Levin
    Journal of Electronic Materials, 2006, 35 : 576 - 580
  • [22] Catalyst-free growth of GaN nanowires
    Bertness, KA
    Sanford, NA
    Barker, JM
    Schlager, JB
    Roshko, A
    Davydov, AV
    Levin, I
    JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (04) : 576 - 580
  • [23] In-assisted Catalyst-free MBE-VLS Growth of InAs Nanowires on Si Substrate
    Yamaguchi, M.
    Horiuchi, I.
    Paek, J. H.
    Sawaki, N.
    PHYSICS OF SEMICONDUCTORS: 30TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, 2011, 1399
  • [24] Tilting Catalyst-Free InAs Nanowires by 3D-Twinning and Unusual Growth Directions
    Potts, Heidi
    van Hees, Youri
    Tutuncuoglu, Gozde
    Friedl, Martin
    Leran, Jean-Baptiste
    Fontcuberta i Morral, Anna
    CRYSTAL GROWTH & DESIGN, 2017, 17 (07) : 3596 - 3605
  • [25] InAs1-xPx nanowires grown by catalyst-free molecular-beam epitaxy
    Isakov, I.
    Panfilova, M.
    Sourribes, M. J. L.
    Tileli, V.
    Porter, A. E.
    Warburton, P. A.
    NANOTECHNOLOGY, 2013, 24 (08)
  • [26] Nucleation conditions for catalyst-free GaN nanowires
    Bertness, K. A.
    Roshko, A.
    Mansfield, L. M.
    Harvey, T. E.
    Sanford, N. A.
    JOURNAL OF CRYSTAL GROWTH, 2007, 300 (01) : 94 - 99
  • [27] Catalyst-free growth of In(As)P nanowires on silicon
    Mattila, M.
    Hakkarainen, T.
    Lipsanen, H.
    Jiang, H.
    Kauppinen, E. I.
    APPLIED PHYSICS LETTERS, 2006, 89 (06)
  • [28] In situ analysis of strain relaxation during catalyst-free nucleation and growth of GaN nanowires
    Knelangen, M.
    Consonni, V.
    Trampert, A.
    Riechert, H.
    NANOTECHNOLOGY, 2010, 21 (24)
  • [29] Structural and electrical properties of catalyst-free Si-doped InAs nanowires formed on Si(111)
    Park, Dong Woo
    Jeon, Seong Gi
    Lee, Cheul-Ro
    Lee, Sang Jun
    Song, Jae Yong
    Kim, Jun Oh
    Noh, Sam Kyu
    Leem, Jae-Young
    Kim, Jin Soo
    SCIENTIFIC REPORTS, 2015, 5
  • [30] Correlated Chemical and Electrically Active Dopant Analysis in Catalyst-Free Si-Doped InAs Nanowires
    Becker, Jonathan
    Hill, Megan O.
    Sonner, Max
    Treu, Julian
    Doeblinger, Markus
    Hirler, Alexander
    Riedl, Hubert
    Finley, Jonathan J.
    Lauhon, Lincoln
    Koblmueller, Gregor
    ACS NANO, 2018, 12 (02) : 1603 - 1610