Efficient quantum memory for single-photon polarization qubits

被引:234
|
作者
Wang, Yunfei [1 ]
Li, Jianfeng [1 ]
Zhang, Shanchao [1 ]
Su, Keyu [1 ]
Zhou, Yiru [1 ]
Liao, Kaiyu [1 ]
Du, Shengwang [1 ,2 ,3 ]
Yan, Hui [1 ]
Zhu, Shi-Liang [1 ,4 ]
机构
[1] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou, Guangdong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China
[3] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Kowloon, Hong Kong, Peoples R China
[4] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
ATOMIC ENSEMBLES; COHERENCE TIME; STORAGE; RETRIEVAL; LIGHT;
D O I
10.1038/s41566-019-0368-8
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A quantum memory, for storing and retrieving flying photonic quantum states, is a key interface for realizing long-distance quantum communication and large-scale quantum computation. While many experimental schemes demonstrating high storage and retrieval efficiency have been performed with weak coherent light pulses, all quantum memories for true single photons achieved so far have efficiencies far below 50%, a threshold value for practical applications. Here, we report the demonstration of a quantum memory for single-photon polarization qubits with an efficiency of > 85% and a fidelity of > 99%, based on balanced two-channel electromagnetically induced transparency in laser-cooled rubidium atoms. For the single-channel quantum memory, the optimized efficiency for storing and retrieving single-photon temporal waveforms can be as high as 90.6%. This result pushes the photonic quantum memory closer to practical applications in quantum information processing.
引用
收藏
页码:346 / 351
页数:6
相关论文
共 50 条
  • [41] QUANTUM NONLOCALITY OF SINGLE-PHOTON STATES
    HOME, D
    AGARWAL, GS
    PHYSICS LETTERS A, 1995, 209 (1-2) : 1 - 5
  • [42] Quantum dynamics of single-photon detection
    Kilin, S. Ya.
    Ignatenko, A. A.
    OPTICS AND SPECTROSCOPY, 2007, 103 (01) : 121 - 128
  • [43] Nonreciprocal single-photon quantum router
    Ren, Ya-long
    Ma, Sheng-li
    Xie, Ji-kun
    Li, Xin-ke
    Cao, Ming-tao
    Li, Fu-li
    PHYSICAL REVIEW A, 2022, 105 (01)
  • [44] SINGLE-PHOTON DETECTOR Free from polarization
    Won, Rachel
    NATURE PHOTONICS, 2008, 2 (12) : 719 - 719
  • [45] Search For Patterns In Single-Photon Polarization Sequences
    Branning, D.
    Katcher, A.
    Strange, W.
    Silverman, M. P.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [46] \ SINGLE-PHOTON DETECTORS Fast and efficient
    Driessen, Eduard F. C.
    NATURE PHOTONICS, 2013, 7 (03) : 168 - 169
  • [47] Single-Photon Storage in a Ground-State Vapor Cell Quantum Memory
    Buser, Gianni
    Mottola, Roberto
    Cotting, Bjorn
    Wolters, Janik
    Treutlein, Philipp
    PRX QUANTUM, 2022, 3 (02):
  • [48] Photon Statistics of Single-Photon Quantum Statesin Real Single Photon Detection
    李刚
    李园
    王军民
    彭墀
    张天才
    量子光学学报, 2004, (S1) : 11 - 12
  • [49] On-Demand Integrated Quantum Memory for Polarization Qubits
    Zhu, Tian-Xiang
    Liu, Chao
    Jin, Ming
    Su, Ming-Xu
    Liu, Yu-Ping
    Li, Wen-Juan
    Ye, Yang
    Zhou, Zong-Quan
    Li, Chuan-Feng
    Guo, Guang-Can
    PHYSICAL REVIEW LETTERS, 2022, 128 (18)
  • [50] Photon-efficient imaging with a single-photon camera
    Shin, Dongeek
    Xu, Feihu
    Venkatraman, Dheera
    Lussana, Rudi
    Villa, Federica
    Zappa, Franco
    Goyal, Vivek K.
    Wong, Franco N. C.
    Shapiro, Jeffrey H.
    NATURE COMMUNICATIONS, 2016, 7