Adaptive Iterative Learning Control for Robot Manipulators Without Using Velocity Signals

被引:0
|
作者
Islam, S. [1 ]
Liu, P. X. [1 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
关键词
Robotics; Adaptive iterative learning control (AILC); Observer; Lyapunov-based switching;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an output based adaptive iterative learning control (OBAILC) scheme for robotic systems. The idea of using OBAILC is to improve the tracking performance iteratively with relatively smaller values of observer-controller gains by assuming that the system tracks the same task iteratively. The design combines proportional-derivative controller with an adaptive term that iteratively updates uncertain parameters where unknown velocity signals are estimated by the output of the linear observer. The Lyapunov-based online switching mechanism is employed to ensure monotonic convergence of the tracking errors with respect to iteration number. The proposed scheme is evaluated on a 2-DOF robot manipulator to demonstrate the theoretical development of this paper.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [31] Iterative learning control for robot manipulators using the finite dimensional input subspace
    Hamamoto, K
    Sugie, T
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2002, 18 (04): : 632 - 635
  • [32] Trajectory tracking control for perturbed robot manipulators using iterative learning method
    Farah Bouakrif
    Michel Zasadzinski
    The International Journal of Advanced Manufacturing Technology, 2016, 87 : 2013 - 2022
  • [33] Trajectory tracking control for perturbed robot manipulators using iterative learning method
    Bouakrif, Farah
    Zasadzinski, Michel
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 87 (5-8): : 2013 - 2022
  • [34] Iterative learning control for robot manipulators using the finite dimensional input subspace
    Hamamoto, K
    Sugie, T
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 4926 - 4931
  • [35] Decentralized Adaptive Iterative Learning Control for Reconfigurable Manipulators
    Zhu Lu
    Dong Bo
    Zhao Bo
    Li Yuanchun
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 3990 - 3995
  • [36] Decentralized adaptive iterative learning control for reconfigurable manipulators
    Li, Yuan-Chun
    Zhu, Lu
    Dong, Bo
    Liu, Ke-Ping
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2012, 42 (02): : 469 - 475
  • [37] Global Asymptotic Adaptive Tracking of Robot Manipulators without Velocity Measurements
    Su, Yuxin
    Zheng, Chunhong
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 307 - 312
  • [38] A Nested-Loop Iterative Learning Control for Robot Manipulators
    Lee, Yu-Hsiu
    Hsu, Sheng-Chieh
    Du, Yan-Yi
    Hu, Jwu-Sheng
    Tsao, Tsu-Chin
    IFAC PAPERSONLINE, 2019, 52 (15): : 358 - 363
  • [39] Robust Iterative Learning Control for Robot Manipulators with Input Deadzone
    Ji, Shuangjie
    Yan, Qiuzhen
    Chen, Qiang
    Lin, Mingjun
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1944 - 1951
  • [40] Higher-order adaptive iterative control for uncertain robot manipulators
    Quan Quan
    Wang Xinhua
    Cai Kaiyuan
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 3, 2007, : 825 - +