Diagonal classes and the Bloch-Kato conjecture

被引:5
|
作者
Bertolini, Massimo [1 ]
Seveso, Marco Adamo [2 ]
Venerucci, Rodolfo [1 ]
机构
[1] Univ Duisburg Essen, Essen, Germany
[2] Univ Milan, Milan, Italy
来源
MUENSTER JOURNAL OF MATHEMATICS | 2020年 / 13卷 / 02期
关键词
EULER SYSTEMS; SYNTOMIC COHOMOLOGY; EISENSTEIN SERIES; MODULAR-FORMS; REGULATORS; CYCLES;
D O I
10.17879/90169661145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this note is twofold. Firstly, we prove an explicit reciprocity law for certain diagonal classes in the etale cohomology of the triple product of a modular curve, stated in [8] and used there as a crucial ingredient in the proof of the main results. Secondly, we apply the aforementioned reciprocity law to address the rank-zero case of the equivariant Bloch-Kato conjecture for the self-dual motive of an elliptic newform of weight k >= 2. In the special case k = 2, our result gives a self-contained and simpler proof of the main result of [15].
引用
收藏
页码:317 / 352
页数:36
相关论文
共 50 条
  • [41] On Bloch-Kato Selmer groups and Iwasawa theory of p-adic Galois representations
    Longo, Matteo
    Vigni, Stefano
    NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 437 - 467
  • [42] Nonvanishing of Hecke L-functions and Bloch-Kato p-Selmer groups
    Iannuzzi, Arianna
    Kim, Byoung Du
    Masri, Riad
    Mathers, Alexander
    Ross, Maria
    Tsai, Wei-Lun
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (04) : 1145 - 1177
  • [43] Note on conjectures of Beilinson–Bloch–Kato¶for cycle classes
    N. Otsubo
    manuscripta mathematica, 2000, 101 : 115 - 124
  • [44] Control theorem for Bloch-Kato's Selmer groups of p-adic representations
    Ochiai, T
    JOURNAL OF NUMBER THEORY, 2000, 82 (01) : 69 - 90
  • [45] Applications of the Bloch–Kato conjecture to cohomological invariants and symbol length
    A. S. Sivatski
    Mathematische Zeitschrift, 2021, 299 : 459 - 472
  • [46] Nonvanishing of Hecke L-functions and the Bloch–Kato conjecture
    Byoung Du Kim
    Riad Masri
    Tong Hai Yang
    Mathematische Annalen, 2011, 349 : 301 - 343
  • [47] KAROUBI'S RELATIVE CHERN CHARACTER, THE RIGID SYNTOMIC REGULATOR, AND THE BLOCH-KATO EXPONENTIAL MAP
    Tamme, Georg
    FORUM OF MATHEMATICS SIGMA, 2014, 2
  • [48] Note on conjectures of Beilinson-Bloch-Kato for cycle classes
    Otsubo, N
    MANUSCRIPTA MATHEMATICA, 2000, 101 (01) : 115 - 124
  • [49] On the Beilinson-Bloch-Kato conjecture for Rankin-Selberg motives
    Liu, Yifeng
    Tian, Yichao
    Xiao, Liang
    Zhang, Wei
    Zhu, Xinwen
    INVENTIONES MATHEMATICAE, 2022, 228 (01) : 107 - 375
  • [50] 1-SMOOTH PRO-p GROUPS AND BLOCH-KATO PRO-p GROUPS
    Quadrelli, Claudio
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2022, 24 (02) : 53 - 67