Diagonal classes and the Bloch-Kato conjecture

被引:5
|
作者
Bertolini, Massimo [1 ]
Seveso, Marco Adamo [2 ]
Venerucci, Rodolfo [1 ]
机构
[1] Univ Duisburg Essen, Essen, Germany
[2] Univ Milan, Milan, Italy
来源
MUENSTER JOURNAL OF MATHEMATICS | 2020年 / 13卷 / 02期
关键词
EULER SYSTEMS; SYNTOMIC COHOMOLOGY; EISENSTEIN SERIES; MODULAR-FORMS; REGULATORS; CYCLES;
D O I
10.17879/90169661145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this note is twofold. Firstly, we prove an explicit reciprocity law for certain diagonal classes in the etale cohomology of the triple product of a modular curve, stated in [8] and used there as a crucial ingredient in the proof of the main results. Secondly, we apply the aforementioned reciprocity law to address the rank-zero case of the equivariant Bloch-Kato conjecture for the self-dual motive of an elliptic newform of weight k >= 2. In the special case k = 2, our result gives a self-contained and simpler proof of the main result of [15].
引用
收藏
页码:317 / 352
页数:36
相关论文
共 50 条