TOWARDS A PATH-INTEGRAL FORMULATION OF CONTINUOUS TIME RANDOM WALKS

被引:2
|
作者
Eule, S. [1 ]
Friedrich, R. [1 ]
机构
[1] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
关键词
Continuous time random walk; Anomalous diffusion; Subordination; Wiener path integral;
D O I
10.1142/9789812837271_0087
中图分类号
O59 [应用物理学];
学科分类号
摘要
In recent years the Continuous Time Random Walk (CTRW) has been used to model anomalous diffusion in a variety of complex systems. Since this process is non-Markovian, the knowledge of single time probability distributions is not sufficient to characterize the CTRW. Using the method of subordination we construct an extension of the Wiener path integral for Brownian motion to CTRW processes. This contribution is a step towards a path integral formulation of CTRWs.
引用
收藏
页码:581 / 584
页数:4
相关论文
共 50 条
  • [41] Correlated continuous time random walks
    Meerschaert, Mark M.
    Nane, Erkan
    Xiao, Yimin
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (09) : 1194 - 1202
  • [42] Composite continuous time random walks
    Hilfer, Rudolf
    EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (12):
  • [43] Composite continuous time random walks
    Rudolf Hilfer
    The European Physical Journal B, 2017, 90
  • [44] Noisy continuous time random walks
    Jeon, Jae-Hyung
    Barkai, Eli
    Metzler, Ralf
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (12):
  • [45] Aging continuous time random walks
    Barkai, E
    Cheng, YC
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (14): : 6167 - 6178
  • [46] Path-integral evidence
    Kitching, T. D.
    Taylor, A. N.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 452 (02) : 1519 - 1522
  • [47] Path-integral approach to the dynamics of a random chain with rigid constraints
    Ferrari, Franco
    Paturej, Jaroslaw
    Vilgis, Thomas A.
    PHYSICAL REVIEW E, 2008, 77 (02):
  • [48] Chemical Continuous Time Random Walks
    Aquino, Tomas
    Dentz, Marco
    PHYSICAL REVIEW LETTERS, 2017, 119 (23)
  • [49] Cluster continuous time random walks
    Jurlewicz, Agnieszka
    Meerschaert, Mark M.
    Scheffler, Hans-Peter
    STUDIA MATHEMATICA, 2011, 205 (01) : 13 - 30
  • [50] A MOST GENERAL FORMULATION OF ANOMALIES AND THEIR FAMILY-STRUCTURE IN QED IN PATH-INTEGRAL FORMULATION
    JOGLEKAR, SD
    SAINI, G
    ANNALS OF PHYSICS, 1994, 229 (01) : 76 - 108