Subword complexes in Coxeter groups

被引:77
|
作者
Knutson, A [1 ]
Miller, E [1 ]
机构
[1] MSRI, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Coxeter group; reduced composition; reduced word; reduced expression; subword; simplicial complex; shellable; vertex-decomposable; Hilbert series; Grothendieck polynomial;
D O I
10.1016/S0001-8708(03)00142-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (Pi, Sigma) be a Coxeter system. An ordered list of elements in Sigma and an element in Pi determine a subword complex, as introduced in Knutson and Miller (Ann. of Math. (2) (2003), to appear). Subword complexes are demonstrated here to be homeomorphic to balls or spheres, and their Hilbert series are shown to reflect combinatorial properties of reduced expressions in Coxeter groups. Two formulae for double Grothendieck polynomials, one of which appeared in Fomin and Kirillov (Proceedings of the Sixth Conference in Formal Power Series and Algebraic Combinatorics, DIMACS, 1994, pp. 183-190), are recovered in the context of simplicial topology for subword complexes. Some open questions related to subword complexes are presented. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:161 / 176
页数:16
相关论文
共 50 条
  • [21] INTEGRABLE COXETER GROUPS
    BELLON, MP
    MAILLARD, JM
    VIALLET, CM
    PHYSICS LETTERS A, 1991, 159 (4-5) : 221 - 232
  • [22] Shadows in Coxeter Groups
    Graeber, Marius
    Schwer, Petra
    ANNALS OF COMBINATORICS, 2020, 24 (01) : 119 - 147
  • [23] Chordal Coxeter groups
    John G. Ratcliffe
    Steven T. Tschantz
    Geometriae Dedicata, 2008, 136 : 57 - 77
  • [24] Rigidity of Coxeter groups
    Prassidis, S
    Spieler, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) : 2619 - 2642
  • [25] On cosets in Coxeter groups
    Hart, Sarah B.
    Rowley, Peter J.
    TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (01) : 77 - 93
  • [26] Shadows in Coxeter Groups
    Marius Graeber
    Petra Schwer
    Annals of Combinatorics, 2020, 24 : 119 - 147
  • [27] Irreducible coxeter groups
    Paris, Luis
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2007, 17 (03) : 427 - 447
  • [28] On the efficiency of Coxeter groups
    Baik, YG
    Pride, SJ
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 : 32 - 36
  • [29] Cohomology of Coxeter groups
    Salvetti, M
    TOPOLOGY AND ITS APPLICATIONS, 2002, 118 (1-2) : 199 - 208
  • [30] Scattering and Coxeter groups
    Plakhov, AY
    Stepin, AM
    RUSSIAN MATHEMATICAL SURVEYS, 1998, 53 (02) : 401 - 402