Effects of Various Patterns of Intermittent Hydrostatic Pressure on the Osteogenic Differentiation of Mesenchymal Stem Cells

被引:0
|
作者
Kang, Yun Gyeong [1 ]
Garcia, M. V. [2 ]
Marquez, J. C. [2 ]
Park, So Hee [1 ]
Oh, Min Jae [1 ]
Kim, Young Mi [1 ]
Shin, Jung-Woog [1 ,2 ,3 ]
机构
[1] Inje Univ, Dept Biomed Engn, Gimhae 621749, Gyeongnam, South Korea
[2] Inje Univ, Dept Hlth Sci & Technol, Gimhae 621749, Gyeongnam, South Korea
[3] Inje Univ, Inst Aged Life Redesign, Cardiovasc & Metab Dis Ctr, UHRC, Gimhae 621749, Gyeongnam, South Korea
关键词
mesenchymal stem cells; intermittent hydrostatic pressure; biomechanical stimuli; osteogenic differentiation; GROWTH-FACTOR; MECHANICAL STRAIN; BONE; PROLIFERATION; STIMULATION; OSTEOBLASTS; EXPRESSION; GENE;
D O I
10.1007/s13770-013-1127-4
中图分类号
Q813 [细胞工程];
学科分类号
摘要
This study investigated the effects of intemittent hydrostatic pressure (IHP) patterns on the responses of mesenchymal stem cells (MSCs) such as osteogenic differentiation, proliferation and senescence. For these experimental groups were set based on IHP patterns: (1) C_BM: control group with no stimulation in basal media; (2) C_OM: control group with no stimulation in osteogenic media (OM); (3) S_2H/5M: longer pressurizing (2hours) and shorter resting (5minutes) time in OM; (4) S_1H/1H: equal pressurizing and resting time (1hour) in OM; (5) S_2M/15M: shorter pressurizing (2minutes) and longer resting (15minutes) time in OM. The magnitude of IHP was 0.15 MPa. IHP was applied to corresponding groups for 4 hours a day from 3 days starting at 48 hours after seeding. Examination of DNA contents, ALP activity and its staining, quantitative real-time PCR, and beta-galactosidase staining were performed. ALP amount normalized by corresponding DNA content in S_2H/5M, C_BM was significantly lower than that of the other group at day 5, which was more observable even at day 7 while S_2H/5M significantly had lower ALP count than other groups at day 5 and day 7. Other groups (S_1H/1H and S_2M/15M) showed significantly higher ALP amounts indicating the positive effect on osteogenic differentiation. Other markers indicating the degrees of differentiation showed comparable results. Based on beta-galactosidase staining, it appeared that mechanical stimuli did not affect cell senescence significantly. From this study, we concluded that engagement of IHP has a potential of controlling osteogenic differentiation depending on its pattern: it can promote or suppress differentiation.
引用
收藏
页码:32 / 39
页数:8
相关论文
共 50 条
  • [21] The Effects of Secretion Factors from Umbilical Cord Derived Mesenchymal Stem Cells on Osteogenic Differentiation of Mesenchymal Stem Cells
    Wang, Kui-Xing
    Xu, Liang-Liang
    Rui, Yun-Feng
    Huang, Shuo
    Lin, Si-En
    Xiong, Jiang-Hui
    Li, Ying-Hui
    Lee, Wayne Yuk-Wai
    Li, Gang
    PLOS ONE, 2015, 10 (03):
  • [22] MicroRNAs in regulation of osteogenic differentiation of mesenchymal stem cells
    Huang, Cong
    Geng, Junnan
    Jiang, Siwen
    CELL AND TISSUE RESEARCH, 2017, 368 (02) : 229 - 238
  • [23] Epigenetic Regulation of Osteogenic Differentiation of Mesenchymal Stem Cells
    Fu, Gang
    Ren, Aishu
    Qiu, Yu
    Zhang, Yi
    CURRENT STEM CELL RESEARCH & THERAPY, 2016, 11 (03) : 235 - 246
  • [24] MicroRNAs in regulation of osteogenic differentiation of mesenchymal stem cells
    Cong Huang
    Junnan Geng
    Siwen Jiang
    Cell and Tissue Research, 2017, 368 : 229 - 238
  • [25] Osteogenic Differentiation of Mesenchymal Stem Cells is Affected by Alendronate
    Petcu, E.
    Sharma, C.
    Hamlet, S.
    Ivanovski, S.
    TISSUE ENGINEERING PART A, 2015, 21 : S348 - S349
  • [26] Effects of PDMS Surface Patterns on Differentiation and Proliferation MSCs under Intermittent Hydrostatic Pressure
    Jeong, Jae Young
    Kim, Dong Hwa
    Park, So Hee
    Shin, Ji Won
    Han, Jeong Yoon
    Kang, Yun Gyeong
    Shin, Jung Woog
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2010, 7 (03) : 283 - 290
  • [27] The Role of Flavonoids in the Osteogenic Differentiation of Mesenchymal Stem Cells
    Zhang, Jinli
    Liu, Zhihe
    Luo, Yang
    Li, Xiaojian
    Huang, Guowei
    Chen, Huan
    Li, Aiguo
    Qin, Shengnan
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [28] MicroRNAs Regulation in Osteogenic Differentiation of Mesenchymal Stem Cells
    Han, Xiao
    Fan, Zhipeng
    FRONTIERS IN DENTAL MEDICINE, 2021, 2
  • [29] Inhibition of osteogenic differentiation of human mesenchymal stem cells
    Moioli, Eduardo K.
    Hong, Liu
    Mao, Jeremy J.
    WOUND REPAIR AND REGENERATION, 2007, 15 (03) : 413 - 421
  • [30] Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells
    Sharifi, Simin
    Moghaddam, Farzin Arablouye
    Abedi, Atefeh
    Maleki Dizaj, Solmaz
    Ahmadian, Shahin
    Abdolahinia, Elaheh Dalir
    Khatibi, Seyed Mahdi Hosseiniyan
    Samiei, Mohammad
    BIOFACTORS, 2020, 46 (06) : 874 - 893