CO2 efflux, CO2 concentration and photosynthetic refixation in stems of Eucalyptus globulus (Labill.)

被引:27
|
作者
Cerasoli, S. [1 ]
McGuire, M. A. [2 ]
Faria, J. [1 ]
Mourato, M. [1 ]
Schmidt, M. [3 ]
Pereira, J. S. [1 ]
Chaves, M. M. [1 ,4 ]
Teskey, R. O. [2 ]
机构
[1] Univ Tecn Lisboa, Dept Engn Floresta, Inst Super Agron, P-1349017 Lisbon, Portugal
[2] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA
[3] Univ Bayreuth, Dept Plant Ecol, D-95440 Bayreuth, Germany
[4] Inst Tecnol Quim & Biol, Oeiras, Portugal
关键词
Eucalyptus globulus; refixation; stem respiration; TREE STEMS; RESPIRATION; STAND; PINE; SAP; FLUXES; BARK; FLOW; TRANSPIRATION; TRANSPORT;
D O I
10.1093/jxb/ern272
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In spite of the importance of respiration in forest carbon budgets, the mechanisms by which physiological factors control stem respiration are unclear. An experiment was set up in a Eucalyptus globulus plantation in central Portugal with monoculture stands of 5-year-old and 10-year-old trees. CO2 efflux from stems under shaded and unshaded conditions, as well as the concentration of CO2 dissolved in sap [CO2*], stem temperature, and sap flow were measured with the objective of improving our understanding of the factors controlling CO2 release from stems of E. globulus. CO2 efflux was consistently higher in 5-year-old, compared with 10-year-old, stems, averaging 3.4 versus 1.3 mu mol m(-2) s(-1), respectively. Temperature and [CO2*] both had important, and similar, influences on the rate of CO2 efflux from the stems, but neither explained the difference in the magnitude of CO2 efflux between trees of different age and size. No relationship was found between efflux and sap flow, and efflux was independent of tree volume, suggesting the presence of substantial barriers to the diffusion of CO2 from the xylem to the atmosphere in this species. The rate of corticular photosynthesis was the same in trees of both ages and only reduced CO2 efflux by 7%, probably due to the low irradiance at the stem surface below the canopy. The younger trees were growing at a much faster rate than the older trees. The difference between CO2 efflux from the younger and older stems appears to have resulted from a difference in growth respiration rather than a difference in the rate of diffusion of xylem-transported CO2.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [31] Dismantling the confusion between the equivalent CO2 and CO2 concentration levels
    Varzaru, Gaudentiu
    Zarnescu, Adrian
    Ungurelu, Razvan
    Secere, Mihai
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2019), 2019,
  • [32] Stem CO2 efflux and its contribution to ecosystem CO2 efflux decrease with drought in a Mediterranean forest stand
    Rodriguez-Calcerrada, Jesus
    Martin-StPaul, Nicolas K.
    Lempereur, Morine
    Ourcival, Jean-Marc
    del Rey, Maria del Carmen
    Joffre, Richard
    Rambal, Serge
    AGRICULTURAL AND FOREST METEOROLOGY, 2014, 195 : 61 - 72
  • [33] Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux
    Oishi, A. Christopher
    Palmroth, Sari
    Johnsen, Kurt H.
    Mccarthy, Heather R.
    Oren, Ram
    GLOBAL CHANGE BIOLOGY, 2014, 20 (04) : 1146 - 1160
  • [34] Comparison of fractionation techniques of CO2 extracts from Eucalyptus globulus - Composition and insecticidal activity
    Topiar, M.
    Sajfrtova, M.
    Pavela, R.
    Machalova, Z.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2015, 97 : 202 - 210
  • [35] To CO2 or not to CO2 ,that is the question!
    Hohnadel, DC
    Gruttadauria, M
    Murray, K
    Levin, M
    D'Souza, J
    CLINICAL CHEMISTRY, 2003, 49 (06) : A90 - A90
  • [36] Relationship between stem CO2 efflux, stem sap velocity and xylem CO2 concentration in young loblolly pine trees
    Maier, Chris A.
    Clinton, Barton D.
    PLANT CELL AND ENVIRONMENT, 2006, 29 (08): : 1471 - 1483
  • [37] REFIXATION OF XYLEM SAP CO2 IN POPULUS-DELTOIDES
    STRINGER, JW
    KIMMERER, TW
    PHYSIOLOGIA PLANTARUM, 1993, 89 (02) : 243 - 251
  • [38] PHOTOSYNTHETIC CO2 FIXATION AT AIR LEVELS OF CO2 BY ISOLATED SPINACH-CHLOROPLASTS
    STUMPF, DK
    JENSEN, RG
    PLANT PHYSIOLOGY, 1982, 69 (06) : 1263 - 1267
  • [39] PHOTOSYNTHETIC CO2 FIXATION AND BIOMASS IN THE ARBOREAL CENOSES - METHODS OF ESTIMATING CO2 SEQUESTERING
    KAIBIYAINEN, LK
    BOLONDINSKII, VK
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 1995, 42 (01) : 123 - 128
  • [40] Interpretation of stem CO2 efflux measurements
    Holtta, Teemu
    Kolari, Pasi
    TREE PHYSIOLOGY, 2009, 29 (11) : 1447 - 1456