Algorithm for computing minimum distance

被引:2
|
作者
Garcia-Villalba, LJ
Rodriguez-Palánquex, MC
Montoya-Vitini, F
机构
[1] CSIC, Inst Fis Aplicada, Dept Tratamiento Informac & Codificac, E-28006 Madrid, Spain
[2] Univ Complutense Madrid, Escuela Univ Estadist, Secc Dept Matemat Aplicada, E-28040 Madrid, Spain
关键词
D O I
10.1049/el:19991017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new class of curves, the so-called quasi-Hermitian curves, on F-q (with q = 2(j)) are presented. An algorithm which enables the exact minimum distance for the corresponding Goppa codes to be determined is also presented. This work leads to the possibility of constructing new versions of such codes.
引用
下载
收藏
页码:1534 / 1535
页数:2
相关论文
共 50 条
  • [1] A New Algorithm for computing Minimum Distance
    Sundaraj, K
    d'Aulignac, D
    Mazer, E
    2000 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2000), VOLS 1-3, PROCEEDINGS, 2000, : 2115 - 2120
  • [2] ALGORITHM FOR COMPUTING MINIMUM PRODUCT DISTANCE OF TCM CODES
    DU, J
    VUCETIC, B
    ELECTRONICS LETTERS, 1992, 28 (01) : 2 - 4
  • [3] Heapmod algorithm for computing the minimum free distance of convolutional codes.
    David, O
    Lyandres, V
    21ST IEEE CONVENTION OF THE ELECTRICAL AND ELECTRONIC ENGINEERS IN ISRAEL - IEEE PROCEEDINGS, 2000, : 435 - 438
  • [4] An algorithm on collision detection by computing the minimum distance between two convex polyhedra
    Jin, Hanjun
    Wang, Yanlin
    Wang, Xiaorong
    Fu, Jia
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 304 - 304
  • [5] An algorithm for rapidly computing the minimum distance between two objects collision detection
    Gong, Faming
    Gao, Bo
    Niu, Qiuli
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 2, PROCEEDINGS, 2008, : 676 - 679
  • [6] On computing the minimum distance of linear codes
    Mohri, M
    Morii, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2000, 83 (11): : 32 - 42
  • [7] On computing the minimum distance of linear codes
    Mohri, Masami
    Morii, Masakatu
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 2000, 83 (11): : 32 - 42
  • [8] The intractability of computing the minimum distance of a code
    Vardy, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) : 1757 - 1766
  • [10] Algorithm research for computing the minimum distance between two convex polyhedra in collision detection
    Jin, Hanjun
    Li, Zhaohui
    Wang, Yanlin
    Wang, Qiong
    Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering), 2006, 30 (02): : 300 - 302