Heapmod algorithm for computing the minimum free distance of convolutional codes.

被引:0
|
作者
David, O [1 ]
Lyandres, V [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1109/EEEI.2000.924461
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The minimum free distance of a convolutional code is the most important characteristic determining the code capability of detecting and correcting errors. A new algorithm for its computing is presented in this letter. A heap data structure and simple module calculations are used to implement the computations. The algorithm can be used by free hand for relatively short constraint length.
引用
收藏
页码:435 / 438
页数:4
相关论文
共 50 条
  • [1] MINIMUM-DISTANCE DECODING OF BINARY CONVOLUTIONAL CODES.
    Clark, A.P.
    1978, 1 (04): : 190 - 196
  • [2] Computing the free-distance of convolutional codes by the simulated annealing algorithm
    Ma, Fulong, 1600, Chinese Institute of Electronics, Beijing, China (23):
  • [3] BOUNDED DISTANCE COSET DECODING OF CONVOLUTIONAL CODES.
    Jensen, Jorn M.
    Reed, Irving S.
    IEE proceedings. Part F. Communications, radar and signal processing, 1986, 133 (05): : 488 - 492
  • [4] EFFECTIVE MINIMUM FREE DISTANCE FOR CONVOLUTIONAL-CODES
    RASHVAND, HF
    ELECTRONICS LETTERS, 1981, 17 (13) : 463 - 465
  • [5] UPPER BOUNDS ON THE MINIMUM DISTANCE OF TRELLIS CODES.
    Calderbank, A.R.
    Mazo, J.E.
    Shapiro, H.M.
    The Bell System technical journal, 1983, 62 (8 pt 1): : 2617 - 2646
  • [6] ALGORITHM FOR COMPUTING MINIMUM PRODUCT DISTANCE OF TCM CODES
    DU, J
    VUCETIC, B
    ELECTRONICS LETTERS, 1992, 28 (01) : 2 - 4
  • [7] ASYMPTOTIC UPPER BOUNDS ON THE MINIMUM DISTANCE OF TRELLIS CODES.
    Calderbank, A.Robert
    Mazo, J.E.
    Wei, Victor K.
    IEEE Transactions on Communications, 1985, COM-33 (04): : 305 - 309
  • [8] A FAST ALGORITHM FOR COMPUTING DISTANCE SPECTRUM OF CONVOLUTIONAL-CODES
    CEDERVALL, M
    JOHANNESSON, R
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (06) : 1146 - 1159
  • [9] A SYSTEMATIC METHOD FOR COMPUTING THE MINIMUM FREE DISTANCE OF A CONVOLUTIONAL CODE
    BOUTROS, YZ
    FIANI, GP
    LOOKA, ES
    ENGINEERING FRACTURE MECHANICS, 1993, 46 (04) : 701 - 708
  • [10] On computing the minimum distance of linear codes
    Mohri, Masami
    Morii, Masakatu
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 2000, 83 (11): : 32 - 42