Pansharpening Using Guided Filtering to Improve the Spatial Clarity of VHR Satellite Imagery

被引:25
|
作者
Choi, Jaewan [1 ]
Park, Honglyun [1 ]
Seo, Doochun [2 ]
机构
[1] Chungbuk Natl Univ, Dept Civil Engn, Chungdae Ro 1, Cheongju 28644, Chungbuk, South Korea
[2] Korea Aerosp Res Inst, Daejeon 34133, South Korea
关键词
KOMPSAT-3A; pansharpening; guided filtering (GF); spatial clarity; optimal injection gains; spatial dissimilarity; FUSION; MS; ALGORITHMS; REGRESSION;
D O I
10.3390/rs11060633
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Pansharpening algorithms are designed to enhance the spatial resolution of multispectral images using panchromatic images with high spatial resolutions. Panchromatic and multispectral images acquired from very high resolution (VHR) satellite sensors used as input data in the pansharpening process are characterized by spatial dissimilarities due to differences in their spectral/spatial characteristics and time lags between panchromatic and multispectral sensors. In this manuscript, a new pansharpening framework is proposed to improve the spatial clarity of VHR satellite imagery. This algorithm aims to remove the spatial dissimilarity between panchromatic and multispectral images using guided filtering (GF) and to generate the optimal local injection gains for pansharpening. First, we generate optimal multispectral images with spatial characteristics similar to those of panchromatic images using GF. Then, multiresolution analysis (MRA)-based pansharpening is applied using normalized difference vegetation index (NDVI)-based optimal injection gains and spatial details obtained through GF. The algorithm is applied to Korea multipurpose satellite (KOMPSAT)-3/3A satellite sensor data, and the experimental results show that the pansharpened images obtained with the proposed algorithm exhibit a superior spatial quality and preserve spectral information better than those based on existing algorithms.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Assessing fuel treatment effectiveness using satellite imagery and spatial statistics
    Wimberly, Michael C.
    Cochrane, Mark A.
    Baer, Adam D.
    Pabst, Kari
    ECOLOGICAL APPLICATIONS, 2009, 19 (06) : 1377 - 1384
  • [22] Vineyard area estimation using medium spatial resolution satellite imagery
    Rodriguez-Perez, J. R.
    Alvarez-Lopez, C. J.
    Miranda, D.
    Alvarez, M. F.
    SPANISH JOURNAL OF AGRICULTURAL RESEARCH, 2008, 6 (03) : 441 - 452
  • [23] Automatic structures detection and spatial registration using multisensor satellite imagery
    Eugenio, F
    Rovaris, E
    Marcello, J
    Marqués, F
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1038 - 1040
  • [24] Estimation of landslide areas using satellite imagery and spatial features of watersheds
    Kusaka, T
    Ootsuka, M
    Shikada, M
    Kawata, Y
    PROCEEDINGS OF THE ELEVENTH THEMATIC CONFERENCE - GEOLOGIC REMOTE SENSING: PRACTICAL SOLUTIONS FOR REAL WORLD PROBLEMS, VOL II, 1996, : 415 - 420
  • [25] A General Framework for Fast and Interactive Classification of Optical VHR Satellite Imagery Using Hierarchical and Planar Markov Random Fields
    Kersten, Jens
    Gaehler, Monika
    Voigt, Stefan
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2010, (06): : 439 - 449
  • [26] TWO-LEVEL ACTIVE LEARNING METHOD FOR DEBRIS DETECTION USING VHR SATELLITE IMAGERY AND LOCAL AERIAL SURVEYS
    Xu, Zhihua
    Persello, Claudio
    Li, Mengmeng
    Wu, Lixin
    Wu, Pengtianhao
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3070 - 3073
  • [27] Improve satellite radio navigation system performances using linear Kalman filtering
    Hajiyev, C
    RAST 2003: RECENT ADVANCES IN SPACE TECHNOLOGIES, PROCEEDINGS, 2003, : 547 - 552
  • [28] Using the spatial and spectral precision of satellite imagery to predict wildlife occurrence patterns
    Laurent, EJ
    Shi, HJ
    Gatziolis, D
    LeBouton, JP
    Walters, MB
    Liu, JG
    REMOTE SENSING OF ENVIRONMENT, 2005, 97 (02) : 249 - 262
  • [29] Spatial monitoring of grassland management using multi-temporal satellite imagery
    Stumpf, Felix
    Schneider, Manuel K.
    Keller, Armin
    Mayr, Andreas
    Rentschler, Tobias
    Meuli, Reto G.
    Schaepman, Michael
    Liebisch, Frank
    ECOLOGICAL INDICATORS, 2020, 113
  • [30] Superpixel-Based 3D Building Model Refinement and Change Detection, Using VHR Stereo Satellite Imagery
    Gharibbafghi, Zeinab
    Tian, Jiaojiao
    Reinartz, Peter
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 493 - 495