d-orthogonality of discrete q-Hermite type polynomials

被引:7
|
作者
Lamiri, Imed [1 ]
机构
[1] Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
关键词
d-orthogonality; Basic hypergeometric polynomials; Linear functionals; Hermite polynomials; Discrete q-Hermite polynomials I and II; GENERATING-FUNCTIONS;
D O I
10.1016/j.jat.2012.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we solve a characterization problem involving a suitable basic-hypergeometric form of a polynomial set. That allows us to introduce new examples of L-q-classical d-orthogonal polynomials, generalizing the discrete q-Hermite polynomials in the context of d-orthogonality, and a q-analogous for the d-orthogonal polynomials of Gould-Hopper. For the resulting polynomials, we derive miscellaneous properties. Those turn out to be limit relations, recurrence relations of order (d + 1), difference formulas, generating functions, inversion formulas, and d-dimensional functional vectors. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:116 / 133
页数:18
相关论文
共 50 条
  • [41] GENERALIZED q-HERMITE POLYNOMIALS AND THE q-DUNKL HEAT EQUATION
    Jazmati, M. Saleh
    Mezlini, Kamel
    Bettaibi, Neji
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 6 (04): : 16 - 43
  • [42] Deformed algebras, q-hermite polynomials and q-Bessel functions
    Srinivasan, V
    Chaturvedi, S
    FRONTIERS OF FUNDAMENTAL PHYSICS 4, 2001, : 217 - 221
  • [43] The factorization of a q-difference equation for continuous q-Hermite polynomials
    Atakishiyev, M. N.
    Klimyk, A. U.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (31) : 9311 - 9317
  • [44] DISTANCE-k GRAPHS OF HYPERCUBE AND q-HERMITE POLYNOMIALS
    Lee, Hun Hee
    Obata, Nobuaki
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 16 (02)
  • [45] Spectrum of the q-Schrodinger equation by means of the variational method based on the discrete q-Hermite I polynomials
    Turan, Mehmet
    Adiguzel, Rezan Sevinik
    Calisir, Ayse Dogan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (03):
  • [46] An integral representation and a Rodrigues-type difference formula for the continuous q-Hermite polynomials
    Atakishiyev, NM
    Atakishiyeva, MK
    PHOTONIC AND QUANTUM TECHNOLOGIES FOR AEROSPACE APPLICATIONS III, 2001, 4386 : 145 - 151
  • [47] On Integral and Finite Fourier Transforms of Continuous q-Hermite Polynomials
    Atakishiyeva, M. K.
    Atakishiyev, N. M.
    PHYSICS OF ATOMIC NUCLEI, 2009, 72 (05) : 752 - 760
  • [48] SOME MULTILINEAR GENERATING-FUNCTIONS FOR Q-HERMITE POLYNOMIALS
    SRIVASTAVA, HM
    JAIN, VK
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 144 (01) : 147 - 157
  • [49] THE COMBINATORICS OF Q-HERMITE POLYNOMIALS AND THE ASKEY-WILSON INTEGRAL
    ISMAIL, MEH
    STANTON, D
    VIENNOT, G
    EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (04) : 379 - 392
  • [50] On integral and finite Fourier transforms of continuous q-Hermite polynomials
    M. K. Atakishiyeva
    N. M. Atakishiyev
    Physics of Atomic Nuclei, 2009, 72 : 752 - 760