d-orthogonality of discrete q-Hermite type polynomials

被引:7
|
作者
Lamiri, Imed [1 ]
机构
[1] Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
关键词
d-orthogonality; Basic hypergeometric polynomials; Linear functionals; Hermite polynomials; Discrete q-Hermite polynomials I and II; GENERATING-FUNCTIONS;
D O I
10.1016/j.jat.2012.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we solve a characterization problem involving a suitable basic-hypergeometric form of a polynomial set. That allows us to introduce new examples of L-q-classical d-orthogonal polynomials, generalizing the discrete q-Hermite polynomials in the context of d-orthogonality, and a q-analogous for the d-orthogonal polynomials of Gould-Hopper. For the resulting polynomials, we derive miscellaneous properties. Those turn out to be limit relations, recurrence relations of order (d + 1), difference formulas, generating functions, inversion formulas, and d-dimensional functional vectors. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:116 / 133
页数:18
相关论文
共 50 条
  • [1] d-orthogonality of Hermite type polynomials
    Lamiri, I.
    Ouni, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) : 24 - 43
  • [2] Orthogonality Property of the Discrete q-Hermite Matrix Polynomials
    Salem, Ahmed
    Alzahrani, Faris
    El-Shahed, Moustafa
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [3] On the Discrete q-Hermite Matrix Polynomials
    Salem A.
    International Journal of Applied and Computational Mathematics, 2017, 3 (4) : 3147 - 3158
  • [4] On Rodriguez representations for discrete q-Hermite polynomials of type II
    Ey, K
    Ruffing, A
    DYNAMIC SYSTEMS AND APPLICATIONS, 2004, 13 (3-4): : 397 - 407
  • [5] d-orthogonality of a generalization of both Laguerre and Hermite polynomials
    Blel, Mongi
    Ben Cheikh, Youssef
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (02) : 183 - 190
  • [6] d-orthogonality of Little q-Laguerre type polynomials
    Ben Cheikh, Y.
    Lamiri, I.
    Ouni, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (01) : 74 - 84
  • [7] ON THE LIMIT OF DISCRETE q-HERMITE I POLYNOMIALS
    Alwhishi, Sakina
    Adiguzel, Rezan Sevinik
    Turan, Mehmet
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 2272 - 2282
  • [8] d-Orthogonality of Humbert and Jacobi type polynomials
    Lamiri, I.
    Ouni, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 24 - 51
  • [9] MORE ON Q-HERMITE POLYNOMIALS
    DEBERGH, N
    MODERN PHYSICS LETTERS A, 1994, 9 (37) : 3481 - 3486
  • [10] Generalized q-hermite polynomials
    Berg, C
    Ruffing, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (01) : 29 - 46