New generalized Bessel-Gaussian beams

被引:43
|
作者
Li, YJ
Lee, H
Wolf, E
机构
[1] MaxEmil Photon Co, Taipei, Taiwan
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
关键词
D O I
10.1364/JOSAA.21.000640
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Analytical expressions are derived for a new set of optical beams, in which the radial dependence is described by a sum of Bessel distributions of different orders, modified by a flat-topped Gaussian function expressed in the form 1 - [ 1 - exp(- xi(2))](M), where xi is a dimensionless parameter and M(greater than or equal to1) is a scalar quantity. The flat-topped Gaussian function can be readily expanded into a series of the lowest-order Gaussian modes with different parameters; this situation makes it possible to express the optical beam as a series of conventional Bessel-Gaussian beams of different orders. The propagation features of this new set of optical beams are investigated to reveal how a windowed Bessel beam passes progressively from a smooth Gaussian window toward the hard-edge limit. (C) 2004 Optical Society of America.
引用
收藏
页码:640 / 646
页数:7
相关论文
共 50 条
  • [41] Scintillation index of modified Bessel-Gaussian beams propagating in turbulent media
    Eyyuboglu, Halil T.
    Baykal, Yahya
    Sermutlu, Emre
    Korotkova, Olga
    Cai, Yangjian
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (02) : 387 - 394
  • [42] The Wigner distribution functions of coherent and partially coherent Bessel-Gaussian beams
    朱开成
    李绍新
    唐英
    余燕
    唐慧琴
    [J]. Chinese Physics B, 2012, 21 (03) : 208 - 211
  • [43] Gouy phase of Bessel-Gaussian beams: theory vs. experiment
    Stoyanov, Lyubomir
    Stefanov, Aleksander
    Dreischuh, Alexander
    Paulus, Gerhard G.
    [J]. OPTICS EXPRESS, 2023, 31 (09): : 13683 - 13699
  • [44] OPTICAL TRAPPING AND MOVING OF MICROPARTICLES USING ASYMMETRICAL BESSEL-GAUSSIAN BEAMS
    Porfirev, A. P.
    Kovalev, A. A.
    Kotlyar, V. V.
    [J]. COMPUTER OPTICS, 2016, 40 (02) : 152 - 157
  • [45] Coherence singularity and evolution of partially coherent Bessel-Gaussian vortex beams
    Zhu, Junan
    Zhang, Hao
    Wang, Zhuoyi
    Zhao, Uechun
    Lu, Xingyuan
    Cai, Yangjiang
    Zhao, Hengliang
    [J]. OPTICS EXPRESS, 2023, 31 (06) : 9308 - 9318
  • [46] The Wigner distribution functions of coherent and partially coherent Bessel-Gaussian beams
    Zhu Kai-Cheng
    Li Shao-Xin
    Tang Ying
    Yu Yan
    Tang Hui-Qin
    [J]. CHINESE PHYSICS B, 2012, 21 (03)
  • [47] Improving the transmission efficiency of the Cassegrain optical system for Bessel-Gaussian beams
    Liu, Renxuan
    Yang, Huajun
    Jiang, Ping
    Qin, Yan
    Caiyang, Weinan
    Cao, Biao
    Zhou, Miaofang
    Mao, Shengqian
    [J]. APPLIED OPTICS, 2020, 59 (12) : 3736 - 3741
  • [48] Propagation of Bessel and Bessel-Gaussian beams through an unapertured or apertured misaligned paraxial optical systems
    Cai, Yangjian
    Lu, Xiang
    [J]. OPTICS COMMUNICATIONS, 2007, 274 (01) : 1 - 7
  • [49] Constructing various paraxial beams out of regular and modified Bessel-Gaussian modes
    Radozycki, Tomasz
    [J]. PHYSICAL REVIEW A, 2023, 107 (02)
  • [50] Propagation of the Bessel-Gaussian beams generated by coherent beam combining in oceanic turbulence
    Xu, DongLing
    Yue, Peng
    Yi, Xiang
    [J]. SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427