New generalized Bessel-Gaussian beams

被引:43
|
作者
Li, YJ
Lee, H
Wolf, E
机构
[1] MaxEmil Photon Co, Taipei, Taiwan
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
关键词
D O I
10.1364/JOSAA.21.000640
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Analytical expressions are derived for a new set of optical beams, in which the radial dependence is described by a sum of Bessel distributions of different orders, modified by a flat-topped Gaussian function expressed in the form 1 - [ 1 - exp(- xi(2))](M), where xi is a dimensionless parameter and M(greater than or equal to1) is a scalar quantity. The flat-topped Gaussian function can be readily expanded into a series of the lowest-order Gaussian modes with different parameters; this situation makes it possible to express the optical beam as a series of conventional Bessel-Gaussian beams of different orders. The propagation features of this new set of optical beams are investigated to reveal how a windowed Bessel beam passes progressively from a smooth Gaussian window toward the hard-edge limit. (C) 2004 Optical Society of America.
引用
收藏
页码:640 / 646
页数:7
相关论文
共 50 条
  • [1] Conical refraction with generalized Bessel-Gaussian beams
    Mylnikov, Valentin Yu
    Rafailov, Edik U.
    Sokolovskii, Grigorii S.
    [J]. 2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [2] Creation of generalized spiraling bessel beams by fresnel diffraction of Bessel-Gaussian laser beams
    El Halba, E. M.
    Ez-zariy, L.
    Belafhal, A.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (07)
  • [3] Entangled Bessel-Gaussian beams
    McLaren, Melanie
    Agnew, Megan
    Leach, Jonathan
    Roux, Filippus S.
    Padgett, Miles J.
    Boyd, Robert W.
    Forbes, Andrew
    [J]. OPTICS EXPRESS, 2012, 20 (21): : 23589 - 23597
  • [4] ROTATING ELEGANT BESSEL-GAUSSIAN BEAMS
    Kotlyar, V. V.
    Kovalev, A. A.
    Skidanov, R. V.
    Soifer, V. A.
    [J]. COMPUTER OPTICS, 2014, 38 (02) : 162 - 170
  • [5] Double and Square Bessel-Gaussian Beams
    Abramochkin, Eugeny G.
    Kotlyar, Victor V.
    Kovalev, Alexey A.
    [J]. MICROMACHINES, 2023, 14 (05)
  • [6] Bessel-Gaussian Shifted Paraxial Beams: I
    Plachenov, A. B.
    [J]. OPTICS AND SPECTROSCOPY, 2019, 126 (03) : 232 - 239
  • [7] Polarization coupling of vector Bessel-Gaussian beams
    Takeuchi, Ryushi
    Kozawa, Yuichi
    Sato, Shunichi
    [J]. JOURNAL OF OPTICS, 2013, 15 (07)
  • [8] Propagation of modified Bessel-Gaussian beams in turbulence
    Eyyuboglu, Halil Tanyer
    Hardalac, Firat
    [J]. OPTICS AND LASER TECHNOLOGY, 2008, 40 (02): : 343 - 351
  • [9] Beam duality, with application to generalized Bessel-Gaussian, and Hermite- and Laguerre-Gaussian beams
    Sheppard, Colin J. R.
    [J]. OPTICS EXPRESS, 2009, 17 (05): : 3690 - 3697
  • [10] Generation of generalized spiraling Bessel beams by a curved fork-shaped hologram with Bessel-Gaussian laser beams modulated by a Bessel grating
    El Halba, E. M.
    Khouilid, M.
    Boustimi, M.
    Belafhal, A.
    [J]. OPTIK, 2018, 154 : 331 - 343