VOCAL ACTIVITY INFORMED SINGING VOICE SEPARATION WITH THE IKALA DATASET

被引:0
|
作者
Chan, Tak-Shing [1 ]
Yeh, Tzu-Chun [2 ]
Fan, Zhe-Cheng [2 ]
Chen, Hung-Wei [3 ]
Sui, Li [1 ]
Yang, Yi-Hsuan [1 ]
Jang, Roger [2 ]
机构
[1] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei, Taiwan
[2] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
[3] iKala Interact Media Inc, Taipei, Taiwan
关键词
Low-rank and sparse decomposition; singing voice separation; informed source separation; RECORDINGS; MUSIC; SOUND;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A new algorithm is proposed for robust principal component analysis with predefined sparsity patterns. The algorithm is then applied to separate the singing voice from the instrumental accompaniment using vocal activity information. To evaluate its performance, we construct a new publicly available iKala dataset that features longer durations and higher quality than the existing MIR-IK dataset for singing voice separation. Part of it will be used in the MIREX Singing Voice Separation task. Experimental results on both the MIR-IK dataset and the new iKala dataset confirmed that the more informed the algorithm is, the better the separation results are.
引用
收藏
页码:718 / 722
页数:5
相关论文
共 50 条
  • [31] ON THE PERCEPTUAL RELEVANCE OF OBJECTIVE SOURCE SEPARATION MEASURES FOR SINGING VOICE SEPARATION
    Gupta, Udit
    Moore, Elliot, II
    Lerch, Alexander
    2015 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2015,
  • [32] Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing
    Mainka, Alexander
    Poznyakovskiy, Anton
    Platzek, Ivan
    Fleischer, Mario
    Sundberg, Johan
    Muerbe, Dirk
    PLOS ONE, 2015, 10 (07):
  • [33] A Skip Attention Mechanism for Monaural Singing Voice Separation
    Yuan, Weitao
    Wang, Shengbei
    Li, Xiangrui
    Unoki, Masashi
    Wang, Wenwu
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (10) : 1481 - 1485
  • [34] Unsupervised Interpretable Representation Learning for Singing Voice Separation
    Mimilakis, Stylianos, I
    Drossos, Konstantinos
    Schuller, Gerald
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1412 - 1416
  • [35] Monophonic Singing Voice Separation Based on Deep Learning
    Wang, Yutian
    Zhang, Zhao
    Wang, Zheng
    Cai, JuanJuan
    Wang, Hui
    2019 2ND IEEE CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2019), 2019, : 491 - 495
  • [36] A Distinct Synthesizer Convolutional TasNet for Singing Voice Separation
    Tian, Congzhou
    Yang, Deshun
    Chen, Xiaoou
    MULTIMEDIA MODELING (MMM 2020), PT I, 2020, 11961 : 37 - 48
  • [37] Enhanced feature network for monaural singing voice separation
    Yuan, Weitao
    He, Boxin
    Wang, Shengbei
    Wang, Jianming
    Unoki, Masashi
    SPEECH COMMUNICATION, 2019, 106 : 1 - 6
  • [38] Exploiting Music Source Separation For Singing Voice Detection
    Bonzi, Francesco
    Mancusi, Michele
    Deo, Simone Del
    Melucci, Pierfrancesco
    Tavella, Maria Stella
    Parisi, Loreto
    Rodola, Emanuele
    IEEE International Workshop on Machine Learning for Signal Processing, MLSP, 2023, 2023-September
  • [39] Singing Voice Separation in Mono-Channel Music
    Chanrungutai, Angkana
    Ratanamahatana, Chotirat Ann
    2008 INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES, 2008, : 256 - 261
  • [40] 'SINGING PHYSICAL NATURE OF VOCAL ORGAN GUIDE TO UNLOCKING OF SINGING VOICE' - HUSLER,F, RODDMARLING,Y
    SUNDBERG, J
    MUSICAL TIMES, 1977, 118 (1607): : 37 - 37