Scala to the Power of Z3: Integrating SMT and Programming

被引:0
|
作者
Koeksal, Ali Sinan [1 ]
Kuncak, Viktor [1 ]
Suter, Philippe [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a system that integrates the SMT solver Z3 with the Scala programming language. The system supports the use of the SMT solver for checking satisfiability, unsatisfiability, as well as solution enumeration. The embedding of formula trees into Scala uses the host type system of Scala to prevent the construction of certain ill-typed constraints. The solution enumeration feature integrates into the iteration constructions of Scala and supports writing non-deterministic programs. Using Z3's mechanism of theory extensions, our system also helps users construct custom constraint solvers where the interpretation of predicates and functions is given as Scala code. The resulting system preserves the productivity advantages of Scala while simplifying tasks such as combinatorial search.
引用
收藏
页码:400 / 406
页数:7
相关论文
共 50 条
  • [31] WHAT IS THE ANSWER TO Z3=1
    ECKMANN, JP
    RECHERCHE, 1983, 14 (141): : 260 - 262
  • [32] The Structure of Simple Sets in Z3
    S. I. Veselov
    A. Yu. Chirkov
    Automation and Remote Control, 2004, 65 : 396 - 400
  • [33] SU(3)L x (Z3 x Z3) GAUGE SYMMETRY AND TRI- BIMAXIMAL MIXING
    Hattori, Chuichiro
    Matsunaga, Mamoru
    Matsuoka, Takeo
    Nakanishi, Kenichi
    MODERN PHYSICS LETTERS A, 2010, 25 (35) : 2981 - 2989
  • [34] ENTANGLEMENT COMPLEXITY OF GRAPHS IN Z3
    SOTEROS, CE
    SUMNERS, DW
    WHITTINGTON, SG
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 : 75 - 91
  • [35] ON THOMAE FORMULAS FOR Z3 CURVES
    Hattori, Ryohei
    KYUSHU JOURNAL OF MATHEMATICS, 2012, 66 (02) : 393 - 409
  • [36] 亏群同构于Z3~2×Z3的块代数的结构
    戴康顺
    杨胜
    温州大学学报(自然科学版), 2016, 37 (03) : 15 - 20
  • [37] Knotted polygons with curvature in Z3
    Orlandini, E
    Tesi, MC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (47): : 9441 - 9454
  • [38] The elliptic gamma function and SL(3, Z) x Z3
    Felder, G
    Varchenko, A
    ADVANCES IN MATHEMATICS, 2000, 156 (01) : 44 - 76
  • [39] ON THE GENUS OF THE SEMIDIRECT PRODUCT OF Z9 BY Z3
    BRIN, MG
    RAUSCHENBERG, DE
    SQUIER, CC
    JOURNAL OF GRAPH THEORY, 1989, 13 (01) : 49 - 61
  • [40] Z3, THE 1ST MOVE
    HERSCHBERG, B
    VANDENHERIK, J
    ICCA JOURNAL, 1990, 13 (02): : 53 - 54