Optogenetic manipulation of neural circuits in awake marmosets

被引:43
|
作者
MacDougall, Matthew [1 ,2 ]
Nummela, Samuel U. [2 ]
Coop, Shanna [2 ]
Disney, Anita [5 ]
Mitchell, Jude F. [4 ,6 ]
Miller, Cory T. [2 ,3 ,4 ]
机构
[1] Univ Calif San Diego, Dept Neurosurg, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Cort Syst & Behav Lab, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Neurosci Grad Program, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Kavli Inst Brain & Mind, La Jolla, CA 92093 USA
[5] Vanderbilt Univ, Dept Psychol, Nashville, TN 37240 USA
[6] Univ Rochester, Dept Brain & Cognit Sci, Rochester, NY USA
基金
美国国家卫生研究院;
关键词
ChR2; cortex; marmoset; neurophysiology; optogenetics; NONHUMAN PRIMATE; VISUAL-CORTEX; MILLISECOND-TIMESCALE; PITCH PERCEPTION; OPTICAL CONTROL; EYE-MOVEMENTS; NEURONS; MONKEY; STIMULATION; ACTIVATION;
D O I
10.1152/jn.00197.2016
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Optogenetics has revolutionized the study of functional neuronal circuitry (Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Nat Neurosci 8: 1263-1268, 2005; Deisseroth K. Nat Methods 8: 26-29, 2011). Although these techniques have been most successfully implemented in rodent models, they have the potential to be similarly impactful in studies of nonhuman primate brains. Common marmosets (Callithrix jacchus) have recently emerged as a candidate primate model for gene editing, providing a potentially powerful model for studies of neural circuitry and disease in primates. The application of viral transduction methods in marmosets for identifying and manipulating neuronal circuitry is a crucial step in developing this species for neuroscience research. In the present study we developed a novel, chronic method to successfully induce rapid photostimulation in individual cortical neurons transduced by adeno-associated virus to express channelrhodopsin (ChR2) in awake marmosets. We found that large proportions of neurons could be effectively photoactivated following viral transduction and that this procedure could be repeated for several months. These data suggest that techniques for viral transduction and optical manipulation of neuronal populations are suitable for marmosets and can be combined with existing behavioral preparations in the species to elucidate the functional neural circuitry underlying perceptual and cognitive processes.
引用
收藏
页码:1286 / 1294
页数:9
相关论文
共 50 条
  • [31] Optogenetic neuromodulation: New tools for monitoring and breaking neural circuits
    Knafo, S.
    Wyart, C.
    ANNALS OF PHYSICAL AND REHABILITATION MEDICINE, 2015, 58 (04) : 259 - 264
  • [32] A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits
    Wietek, Jonas
    Nozownik, Adrianna
    Pulin, Mauro
    Saraf-Sinik, Inbar
    Matosevich, Noa
    Gowrishankar, Raajaram
    Gat, Asaf
    Malan, Daniela
    Brown, Bobbie J.
    Dine, Julien
    Imambocus, Bibi Nusreen
    Levy, Rivka
    Sauter, Kathrin
    Litvin, Anna
    Regev, Noa
    Subramaniam, Suraj
    Abrera, Khalid
    Summarli, Dustin
    Goren, Eva Madeline
    Mizrachi, Gili
    Bitton, Eyal
    Benjamin, Asaf
    Copits, Bryan A.
    Sasse, Philipp
    Rost, Benjamin R.
    Schmitz, Dietmar
    Bruchas, Michael R.
    Soba, Peter
    Oren-Suissa, Meital
    Nir, Yuval
    Wiegert, J. Simon
    Yizhar, Ofer
    NATURE METHODS, 2024, 21 (07) : 1275 - 1287
  • [33] Controlling the Elements: An Optogenetic Approach to Understanding the Neural Circuits of Fear
    Johansen, Joshua P.
    Wolff, Steffen B. E.
    Luethi, Andreas
    LeDoux, Joseph E.
    BIOLOGICAL PSYCHIATRY, 2012, 71 (12) : 1053 - 1060
  • [34] Optogenetic Strategies to Dissect the Neural Circuits that Underlie Reward and Addiction
    Stamatakis, Alice M.
    Stuber, Garret D.
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2012, 2 (11):
  • [35] Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets
    Santisakultarm, Thom P.
    Kersbergen, Calvin J.
    Bandy, Daryl K.
    Ide, David C.
    Choi, Sang-Ho
    Silva, Afonso C.
    JOURNAL OF NEUROSCIENCE METHODS, 2016, 271 : 55 - 64
  • [36] Optogenetic Manipulation of Phosphoinositides
    Idevall-Hagren, Olof
    FASEB JOURNAL, 2015, 29
  • [37] An intein-split transactivator for intersectional neural imaging and optogenetic manipulation
    Chen, Hao-Shan
    Zhang, Xiao-Long
    Yang, Rong-Rong
    Wang, Guang-Ling
    Zhu, Xin-Yue
    Xu, Yuan-Fang
    Wang, Dan-Yang
    Zhang, Na
    Qiu, Shou
    Zhan, Li-Jie
    Shen, Zhi-Ming
    Xu, Xiao-Hong
    Long, Gang
    Xu, Chun
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [38] An Integrated Circuit for Simultaneous Extracellular Electrophysiology Recording and Optogenetic Neural Manipulation
    Chen, Chang Hao
    McCullagh, Elizabeth A.
    Pun, Sio Hang
    Mak, Peng Un
    Vai, Mang I.
    Mak, Pui In
    Klug, Achim
    Lei, Tim C.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (03) : 557 - 568
  • [39] Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation
    Briguglio, John J.
    Aizenberg, Mark
    Balasubramanian, Vijay
    Geffen, Maria N.
    JOURNAL OF NEUROSCIENCE, 2018, 38 (08): : 2094 - 2105
  • [40] Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures
    Zhang, Feng
    Gradinaru, Viviana
    Adamantidis, Antoine R.
    Durand, Remy
    Airan, Raag D.
    de Lecea, Luis
    Deisseroth, Karl
    NATURE PROTOCOLS, 2010, 5 (03) : 439 - 456