A Nonnegative Matrix Factorization Approach for Multiple Local Community Detection

被引:0
|
作者
Kamuhanda, Dany [1 ]
He, Kun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Hubei, Peoples R China
关键词
Community Detection; Nonnegative Matrix Factorization; Multiple Local Communities;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing works on local community detection in social networks focus on finding one single community a few seed members are most likely to be in. In this work, we address a much harder problem of multiple local community detection and propose a Nonnegative Matrix Factorization algorithm for finding multiple local communities for a single seed chosen randomly in multiple ground truth communities. The number of detected communities for the seed is determined automatically by the algorithm. We first apply a Breadth-First Search to sample the input graph up to several levels depending on the network density. We then use Nonnegative Matrix Factorization on the adjacency matrix of the sampled subgraph to estimate the number of communities, and then cluster the nodes of the subgraph into communities. Our proposed method differs from the existing NMF-based community detection methods as it does not use "argmax" function to assign nodes to communities. Our method has been evaluated on real-world networks and shows good accuracy as evaluated by the F-1 score when comparing with the state-of-the-art local community detection algorithm.
引用
收藏
页码:642 / 649
页数:8
相关论文
共 50 条
  • [41] Nonnegative matrix factorization and metamorphic malware detection
    Yeong Tyng Ling
    Nor Fazlida Mohd Sani
    Mohd Taufik Abdullah
    Nor Asilah Wati Abdul Hamid
    Journal of Computer Virology and Hacking Techniques, 2019, 15 : 195 - 208
  • [42] Nonnegative matrix factorization and metamorphic malware detection
    Ling, Yeong Tyng
    Sani, Nor Fazlida Mohd
    Abdullah, Mohd Taufik
    Hamid, Nor Asilah Wati Abdul
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2019, 15 (03) : 195 - 208
  • [43] Anomaly detection using nonnegative matrix factorization
    Allan, Edward G.
    Horvath, Michael R.
    Kopek, Christopher V.
    Lamb, Brian T.
    Whaples, Thomas S.
    Berry, Michael W.
    SURVEY OF TEXT MINING II: CLUSTERING, CLASSIFICATION, AND RETRIEVAL, 2008, : 203 - +
  • [44] Nonnegative Matrix Factorization Approach for Image Reconstruction
    Wang, Yueyang
    Shafai, Bahram
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021), 2021, : 1639 - 1642
  • [45] Fast Local Learning Regularized Nonnegative Matrix Factorization
    Jiang, Jiaojiao
    Zhang, Haibin
    Xue, Yi
    ADVANCES IN COMPUTATIONAL ENVIRONMENT SCIENCE, 2012, 142 : 67 - 75
  • [46] A Deep Nonnegative Matrix Factorization Approach via Autoencoder for Nonlinear Fault Detection
    Ren, Zelin
    Zhang, Wensheng
    Zhang, Zhizhong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (08) : 5042 - 5052
  • [47] Constrained nonnegative matrix factorization based on local learning
    Shu, Zhenqiu
    Zhao, Chunxia
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43 (07): : 82 - 86
  • [48] Community Detection Algorithm Based on Nonnegative Matrix Factorization and Improved Density Peak Clustering
    Lu, Hong
    Sang, Xiaoshuang
    Zhao, Qinghua
    Lu, Jianfeng
    IEEE ACCESS, 2020, 8 : 5749 - 5759
  • [49] Community detection method based on robust semi-supervised nonnegative matrix factorization
    He, Chaobo
    Zhang, Qiong
    Tang, Yong
    Liu, Shuangyin
    Zheng, Jianhua
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 : 279 - 291
  • [50] Community Detection in Multiplex Networks Based on Orthogonal Nonnegative Matrix Tri-Factorization
    Ortiz-Bouza, Meiby
    Aviyente, Selin
    IEEE ACCESS, 2024, 12 : 6423 - 6436