THE MALTHUSIAN PARAMETER AND R0 FOR HETEROGENEOUS POPULATIONS IN PERIODIC ENVIRONMENTS

被引:12
|
作者
Inaba, Hisashi [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
Basic reproduction number; Malthusian parameter; periodic environments; weak ergodicity; uniform primitivity; exponential solutions; BASIC REPRODUCTION NUMBER; VECTOR-BORNE DISEASES; EPIDEMIC THRESHOLD; FROBENIUS THEORY; WEAK ERGODICITY; GROWTH-RATE; MODELS; DEFINITION; STABILITY; THEOREMS;
D O I
10.3934/mbe.2012.9.313
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since the classical stable population theory in demography by Sharpe and Lotka, the sign relation sign(lambda(0)) - sign(R-0 - 1) between the basic reproduction number R-0 and the Malthusian parameter (the intrinsic rate of natural increase) lambda(0) has played a central role in population theory and its applications, because it connects individual's average reproductivity described by life cycle parameters to growth character of the whole population. Since R-0 is originally defined for linear population evolution process in a constant environment, it is an important extension if we could formulate the same kind of threshold principle for population growth in time-heterogeneous environments. Since the mid-1990s, several authors proposed some ideas to extend the definition of R-0 so that it can be applied to population dynamics in periodic environments. In particular, the definition of R-0 in a periodic environment by Bacaer and Guernaoui (J. Math. Biol. 53, 2006) is most important, because their definition of R-0 in a periodic environment can be interpreted as the asymptotic per generation growth rate, so from the generational point of view, it can be seen as a direct extension of the most successful definition of R-0 in a constant environment by Diekmann, Heesterbeek and Metz (J. Math. Biol. 28, 1990). In this paper, we propose a new approach to establish the sign relation between R-0 and the Malthusian parameter lambda(0) for linear structured population dynamics in a periodic environment. Our arguments depend on the uniform primitivity of positive evolutionary system, which leads the weak ergodicity and the existence of exponential solution in periodic environments. For typical finite and infinite dimensional linear population models, we prove that a positive exponential solution exists and the sign relation holds between the Malthusian parameter, which is defined as the exponent of the exponential solution, and R-0 given by the spectral radius of the next generation operator by Bacaer and Guernaoui's definition.
引用
收藏
页码:313 / 346
页数:34
相关论文
共 50 条
  • [21] States on R0 algebras
    Liu Lianzhen
    Zhang Xiangyang
    [J]. Soft Computing, 2008, 12 : 1099 - 1104
  • [22] R'=R0或R'最接近R0时滑动变阻器的功率最大
    雍泰
    [J]. 数理天地(初中版), 2023, (12) : 7 - 9
  • [23] ON γ-R0 AND γ-R1 SPACES
    Keskin, Aynur
    Noiri, Takashi
    [J]. MISKOLC MATHEMATICAL NOTES, 2009, 10 (02) : 137 - 143
  • [24] R Classification and Pancreatic Ductal Adenocarcinoma-R0 is R0
    Munding, J.
    Uhl, W.
    Tannapfel, A.
    [J]. ZEITSCHRIFT FUR GASTROENTEROLOGIE, 2011, 49 (10): : 1423 - 1427
  • [25] MINIMIZING R0 FOR IN-HOST VIRUS MODEL WITH PERIODIC COMBINATION ANTIVIRAL THERAPY
    Browne, Cameron J.
    Pilyugin, Sergei S.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (10): : 3315 - 3330
  • [26] DETERMINATION OF FRIED PARAMETER R0 PREDICTION FOR THE OBSERVED RMS CONTRAST IN SOLAR GRANULATION
    RICORT, G
    AIME, C
    RODDIER, C
    BORGNINO, J
    [J]. SOLAR PHYSICS, 1981, 69 (02) : 223 - 231
  • [27] Study of the reactions e plus e- ? K+K-,r0,r0,r0, e+ e-?K0SK?,r?,r0,r0, and e plus e-? K0SK?,r?,r+,r- at center-of-mass energies from threshold to 4.5 GeV using initial-state radiation
    Lees, J. P.
    Poireau, V.
    Tisserand, V.
    Grauges, E.
    Palano, A.
    Eigen, G.
    Brown, D. N.
    Kolomensky, Yu. G.
    Fritsch, M.
    Koch, H.
    Cheaib, R.
    Hearty, C.
    Mattison, T. S.
    McKenna, J. A.
    So, R. Y.
    Blinov, V. E.
    Buzykaev, A. R.
    Druzhinin, V. P.
    Kozyrev, E. A.
    Kravchenko, E. A.
    Serednyakov, S. I.
    Skovpen, Yu. I.
    Solodov, E. P.
    Todyshev, K. Yu.
    Lankford, A. J.
    Dey, B.
    Gary, J. W.
    Long, O.
    Eisner, A. M.
    Lockman, W. S.
    Vazquez, W. Panduro
    Chao, D. S.
    Cheng, C. H.
    Echenard, B.
    Flood, K. T.
    Hitlin, D. G.
    Li, Y.
    Lin, D. X.
    Middleton, S.
    Miyashita, T. S.
    Ongmongkolkul, P.
    Oyang, J.
    Porter, F. C.
    Rohrken, M.
    Meadows, B. T.
    Sokoloff, M. D.
    Smith, J. G.
    Wagner, S. R.
    Bernard, D.
    Verderi, M.
    [J]. PHYSICAL REVIEW D, 2023, 107 (07)
  • [28] THE INTENSITY OF THE R0(0) TRANSITION OF SOLID HD
    MCKELLAR, ARW
    CLOUTER, MJ
    [J]. CHEMICAL PHYSICS LETTERS, 1987, 140 (02) : 117 - 119
  • [29] Thymic Neuroendocrine R0 Surgery
    Pena Gomez Portugal, Emmanuel
    Peiro Osuna, Rosa Pamela
    Diana Estrada Gutierrez, E. N. F. Qx
    Carlos Villalva, J. C.
    Sanchez Pereda, D.
    Zavala Vazquez, H. S.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2023, 18 (03) : S23 - S24
  • [30] The r0 structure of ethylene sulfide
    Hirao, T
    Okabayashi, T
    Tanimoto, M
    [J]. JOURNAL OF MOLECULAR SPECTROSCOPY, 2001, 208 (01) : 148 - 149