Minimal strong digraphs

被引:5
|
作者
Garcia-Lopez, J. [2 ]
Marijuan, C. [1 ]
机构
[1] ETSI Informat, Dpto Matemat Aplicada, Valladolid 47011, Spain
[2] EU Informat, Dpto Matemat Aplicada, Madrid 28031, Spain
关键词
Minimal strong digraphs; Strong digraphs; Isospectral strong digraphs; DECOMPOSABLE MATRICES; GRAPHS; BLOCKS;
D O I
10.1016/j.disc.2011.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce adequate concepts of expansion of a digraph to obtain a sequential construction of minimal strong digraphs. We characterize the necessary and sufficient condition for an external expansion of a minimal strong digraph to be a minimal strong digraph. We prove that every minimal strong digraph of order n >= 2 is the expansion of a minimal strong digraph of order n - 1 and we give sequentially generative procedures for the constructive characterization of the classes of minimal strong digraphs. Finally we describe algorithms to compute unlabeled minimal strong digraphs and their isospectral classes. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:737 / 744
页数:8
相关论文
共 50 条
  • [41] ON MINIMAL REGULAR DIGRAPHS WITH GIRTH-4
    QIAO, L
    BRUALDI, RA
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1983, 33 (03) : 439 - 447
  • [42] (Strong) Total proper connection of some digraphs
    Yingbin Ma
    Kairui Nie
    Journal of Combinatorial Optimization, 2021, 42 : 24 - 39
  • [43] (Strong) Proper vertex connection of some digraphs
    Nie, Kairui
    Ma, Yingbin
    Sidorowicz, Ezbieta
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 458
  • [44] The Twin Domination Number of Strong Product of Digraphs
    MA HONG-XIA
    LIU JUAN
    Du Xian-kun
    CommunicationsinMathematicalResearch, 2016, 32 (04) : 332 - 338
  • [45] Finding coherent cyclic orders in strong digraphs
    Satoru Iwata
    Takuro Matsuda
    Combinatorica, 2008, 28
  • [46] Strong asymmetric digraphs with prescribed interior and annulus
    Winters, SJ
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (04) : 831 - 846
  • [47] Finding coherent cyclic orders in strong digraphs
    Iwata, Satoru
    Matsuda, Takuro
    COMBINATORICA, 2008, 28 (01) : 83 - 88
  • [48] On the Cartesian skeleton and the factorization of the strong product of digraphs
    Hellmuth, Marc
    Marc, Tilen
    THEORETICAL COMPUTER SCIENCE, 2015, 565 : 16 - 29
  • [49] ON LOCALLY N-(ARC)-STRONG DIGRAPHS
    CHEN, ZB
    ARS COMBINATORIA, 1994, 38 : 27 - 31
  • [50] (Strong) Total proper connection of some digraphs
    Ma, Yingbin
    Nie, Kairui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 42 (01) : 24 - 39