Start-up and steady-state operation of a passive vapor-feed direct methanol fuel cell fed with pure methanol

被引:20
|
作者
Bahrami, Hafez [1 ]
Faghri, Amir [1 ]
机构
[1] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
DMFC; Passive; Vapor-feed; Pure methanol; High concentration; Transient; CATHODE SIDE; LIQUID WATER; PHASE-CHANGE; TRANSPORT; PERFORMANCE; MEMBRANE; DMFC; SIMULATION; MODEL; MANAGEMENT;
D O I
10.1016/j.ijhydene.2012.02.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A transient, two-dimensional, two-phase, multi-component, non-isothermal model is developed to investigate the start-up and steady-state characteristics of a fully passive, vapor-feed direct methanol fuel cell fed with pure methanol. The model considers the species, heat, charge and electrolyte-dissolved water transport in a single computational domain. During the steady-state operation, methanol loss due to evaporation from the cell to the ambient decreases with an increasing current density. Both the scale analysis and the predictions from the full numerical model reveal that the transient response time depends primarily on the cell load. At high current densities, mass consumption in the anode catalyst layer becomes dominant in the cell transient response time, whereas for the lower current densities, both the diffusive liquid transport in the anode and the mass consumption in the anode catalyst layers are predominant. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8641 / 8658
页数:18
相关论文
共 50 条
  • [31] Numerical simulation on mass transport in a passive vapor-fed direct methanol fuel cell operating with neat methanol
    Wang, Hao-Nan
    Zhu, Xun
    Liao, Qiang
    Chen, Rong
    Ye, Dingding
    Sui, P. C.
    Djilali, Ned
    JOURNAL OF POWER SOURCES, 2020, 477 (477)
  • [32] Improved Vapor-Feed Direct Methanol Fuel Cell by Hydrophobic/Hydrophilic Composite Catalyst Layers via Kelvin Equation
    Zhang, Yujun
    Yuan, Weijian
    Hou, Chenjun
    Zhang, Yufeng
    Wu, Jianfeng
    Zhang, Xuelin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (09) : 3680 - 3690
  • [33] Improvement of water management in a vapor feed direct methanol fuel cell
    Masdar, M. Shahbudin
    Tsujiguchi, Takuya
    Nakagawa, Nobuyoshi
    JOURNAL OF POWER SOURCES, 2010, 195 (24) : 8028 - 8035
  • [34] Developing a passive air-breathing tubular direct methanol fuel cell fed with concentrated methanol
    Yuan, Wei
    Xu, Xiaotian
    Han, Fuchang
    Ye, Guangzhao
    Tang, Yong
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2017, 14 (13) : 1100 - 1109
  • [35] Liquid feed passive direct methanol fuel cell: challenges and recent advances
    Shrivastava, Naveen K.
    Thombre, Shashikant B.
    Chadge, Rajkumar B.
    IONICS, 2016, 22 (01) : 1 - 23
  • [36] Liquid feed passive direct methanol fuel cell: challenges and recent advances
    Naveen K. Shrivastava
    Shashikant B. Thombre
    Rajkumar B. Chadge
    Ionics, 2016, 22 : 1 - 23
  • [37] NUMERICAL ANALYSIS FOR A VAPOR FEED MINIATURE DIRECT METHANOL FUEL CELL SYSTEM
    Xiao, Bin
    Faghri, Amir
    HT2008: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, VOL 1, 2009, : 87 - 97
  • [38] Numerical analysis for a vapor feed miniature direct methanol fuel cell system
    Xiao, Bin
    Faghri, Amir
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (15-16) : 3525 - 3533
  • [39] Real-time, In situ Measurement of Fuel and Crossover Methanol Vapor Concentration of a Vapor-Fed Passive Direct Methanol Fuel Cell Using Laser Absorption Spectroscopy
    Chung, Jinhwa
    Heo, Sungmoo
    Song, Soonho
    Kim, Jinho
    Kang, Sangkyun
    Choi, Kyounghwan
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (02)
  • [40] Toward Fully- and Semi-passive Operation of a Liquid-Fed Direct Methanol Fuel Cell
    Yuan, W.
    Tang, Y.
    Yang, X.
    Wan, Z.
    FUEL CELLS, 2013, 13 (02) : 249 - 258