Rational Design of Lovastatin-Loaded Spherical Reconstituted High Density Lipoprotein for Efficient and Safe Anti-Atherosclerotic Therapy

被引:23
|
作者
Jiang, Cuiping [1 ]
Qi, Zitong [1 ]
Tang, Yuqi [1 ]
Jia, Hengbo [1 ]
Li, Zhuoting [1 ]
Zhang, Wenli [1 ]
Liuo, Jianping [1 ]
机构
[1] China Pharmaceut Univ, Dept Pharmaceut, 24 Tong Jia Xiang, Nanjing 210009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
reconstituted high density lipoprotein; synergistic effect; atherosclerosis; plague targeting; median-effect principle; lovastatin; REMODELING BEHAVIORS; FOAM CELLS; ATHEROSCLEROSIS; NANOPARTICLES; DELIVERY; STATINS;
D O I
10.1021/acs.molpharmaceut.9b00445
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Reconstituted high density lipoprotein (rHDL) is a biomimetic nanoparticle with plaque targeting and anti-atherosclerotic efficacy. In this work, we report on a strategy to rational design of lovastatin (LOV)-loaded spherical rHDL (LOV-s-rHDL) for efficient and safe anti-atherosclerotic therapy. Briefly, three LOV-s-rHDLs were formulated with LOV/s-rHDL at ratios of 8:1, 10:1, and 15:1 upon their respective median-effect values (D-m). The combined inhibitory effect between LOV and s-rHDL of different LOV-s-rHDL formulations on DiI-labeled oxLDL internalization was systemically investigated in RAW 264.7 cells based on the median-effect principle. Median-effect analysis demonstrated that the optimized LOV-s-rHDL was formulated with a ratio of 10:1 (D-m Lov :Dm s-rHDL), in which LOV and s-rHDL carrier showed the best synergistic effect, presumably ascribed to their inhibitory effect on CD36 and SR-A expression according to the Western blot analysis. In vivo pharmacodynamics studies showed that the optimized LOV-s-rHDL displayed the most pronounced anti-atherosclerotic effect on decreasing plaque area and reducing the MMP level following an 8-week dosing regimen. In vivo atherosclerotic plaque targeting analysis revealed that s-rHDL had potent plaque targeting efficacy, probably owing to the interaction between apoA-I and scavenger receptor B-I. Furthermore, we observed that the optimized LOV-s-rHDL exhibited a favorable safety profile as evidenced by the results of a hemolysis assay, cell cytotoxicity study, and in vivo safety test. Collectively, the rational design of the biomimetic LOV-s-rHDL based on the median-effect analysis provides an efficient strategy to achieve a synergistic and safe anti-atherosclerotic therapy.
引用
收藏
页码:3284 / 3291
页数:8
相关论文
共 22 条