Data-Driven Modelling: Concepts, Approaches and Experiences

被引:0
|
作者
Solomatine, D. [1 ]
See, L. M. [2 ]
Abrahart, R. J. [3 ]
机构
[1] UNESCO IHE Inst Water Educ, POB 3015, NL-2601 DA Delft, Netherlands
[2] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Nottingham, Sch Geog, Nottingham NG7 2RD, England
关键词
Data-driven modelling; data mining; computational intelligence; fuzzy rule-based systems; genetic algorithms; committee approaches; hydrology;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data-driven modelling is the area of hydroinformatics undergoing fast development. This chapter reviews the main concepts and approaches of data-driven modelling, which is based on computational intelligence and machine-learning methods. A brief overview of the main methods - neural networks, fuzzy rule-based systems and genetic algorithms, and their combination via committee approaches is provided along with hydrological examples and references to the rest of the book.
引用
收藏
页码:17 / +
页数:5
相关论文
共 50 条
  • [21] Data-driven Modelling of Electromagnetic Interferences in Motor Vehicles Using Intelligent System Approaches
    Petrovski, Sergei
    Bouchet, Frederic
    Petrovski, Andrei
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (IEEE INISTA), 2013,
  • [22] Deterministic drag modelling for spherical particles in Stokes regime using data-driven approaches
    Elmestikawy, Hani
    Reuter, Julia
    Evrard, Fabien
    Mostaghim, Sanaz
    van Wachem, Berend
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 178
  • [23] Advanced data analytics for enhancing building performances: From data-driven to big data-driven approaches
    Cheng Fan
    Da Yan
    Fu Xiao
    Ao Li
    Jingjing An
    Xuyuan Kang
    Building Simulation, 2021, 14 : 3 - 24
  • [24] Advanced data analytics for enhancing building performances: From data-driven to big data-driven approaches
    Fan, Cheng
    Yan, Da
    Xiao, Fu
    Li, Ao
    An, Jingjing
    Kang, Xuyuan
    BUILDING SIMULATION, 2021, 14 (01) : 3 - 24
  • [25] Measurement uncertainty, data quality and data-driven modelling
    Sommer, Klaus-Dieter
    Schuetze, Andreas
    TM-TECHNISCHES MESSEN, 2024, 91 (09) : 417 - 418
  • [26] DAX: Data-Driven Audience Experiences in Esports
    Kokkinakis, Athanasios V.
    Demediuk, Simon
    Nolle, Isabelle
    Olarewaju, Oluseyi
    Patra, Sagarika
    Robertson, Justus
    York, Peter
    Chitayat, Alan Pedrassoli
    Coates, Alistair
    Slawson, Daniel
    Hughes, Peter
    Hardie, Nicolas
    Kirman, Ben
    Hook, Jonathan
    Drachen, Anders
    Ursu, Marian F.
    Block, Florian
    PROCEEDINGS OF THE 2020 ACM INTERNATIONAL CONFERENCE ON INTERACTIVE MEDIA EXPERIENCES, IMX 2020, 2020, : 94 - 105
  • [27] Art, science, and immersion: data-driven experiences
    West, Ruth G.
    Monroe, Laura
    Morie, Jacquelyn Ford
    Aguilera, Julieta
    ENGINEERING REALITY OF VIRTUAL REALITY 2013, 2013, 8649
  • [28] Data-driven approaches in the investigation of social perception
    Adolphs, Ralph
    Nunnmenmaa, Lauri
    Todorov, Alexander
    Haxby, James V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 371 (1693)
  • [29] DATA-DRIVEN APPROACHES TO LEARN HYCHEM MODELS
    Ji, Weiqi
    Zanders, Julian
    Park, Ji-Woong
    Deng, Sili
    PROCEEDINGS OF ASME 2021 INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF2021), 2021,
  • [30] Robust and data-driven approaches to call centers
    Bertsimas, Dimitris
    Doan, Xuan Vinh
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 207 (02) : 1072 - 1085