Dissipative solitons in the discrete Ginzburg-Landau equation with saturable nonlinearity

被引:8
|
作者
Abdullaev, Fatkhulla Kh [1 ]
Salerno, Mario [2 ,3 ]
机构
[1] Uzbek Acad Sci, Phys Tech Inst, Tashkent 100084, Uzbekistan
[2] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo 2, I-84084 Salerno, Italy
[3] Univ Salerno, INFN, Grp Collegato Salerno, Via Giovanni Paolo 2, I-84084 Salerno, Italy
关键词
MODULATIONAL INSTABILITY; SCHRODINGER-EQUATION; ARRAYS;
D O I
10.1103/PhysRevE.97.052208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The modulational instability of nonlinear plane waves and the existence of periodic and localized dissipative solitons and waves of the discrete Ginzburg-Landau equation with saturable nonlinearity are investigated. Explicit analytic expressions for periodic solutions with a zero and a finite background are derived and their stability properties investigated by means of direct numerical simulations. We find that while discrete periodic waves and solitons on a zero background are stable under time evolution, they may become modulationally unstable on finite backgrounds. The effects of a linear ramp potential on stable localized dissipative solitons are also briefly discussed.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Collisions between discrete spatiotemporal dissipative Ginzburg-Landau solitons in two-dimensional photonic lattices
    Mihalache, Dumitru
    Mazilu, Dumitru
    Lederer, Falk
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2010, 8 (01): : 77 - 86
  • [32] A Dissipative Linearly-Implicit Scheme for the Ginzburg-Landau Equation
    Matsuo, T.
    Torii, E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 888 - 891
  • [33] Replication of dissipative vortices modeled by the complex Ginzburg-Landau equation
    Kochetov, Bogdan A.
    Tuz, Vladimir R.
    PHYSICAL REVIEW E, 2018, 98 (06)
  • [34] The Existence of Exponential Attractor for Discrete Ginzburg-Landau Equation
    Du, Guangyin
    Zhu, Zeqi
    Zhao, Caidi
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [35] Optical solitons to the Ginzburg–Landau equation including the parabolic nonlinearity
    K. Hosseini
    M. Mirzazadeh
    L. Akinyemi
    D. Baleanu
    S. Salahshour
    Optical and Quantum Electronics, 2022, 54
  • [36] Bound states of dark solitons in the quintic Ginzburg-Landau equation
    Afanasjev, VV
    Chu, PL
    Malomed, BA
    PHYSICAL REVIEW E, 1998, 57 (01) : 1088 - 1091
  • [37] Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation
    Mihalache, D.
    Mazilu, D.
    Lederer, F.
    Leblond, H.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2007, 75 (03):
  • [38] Stable one-dimensional dissipative solitons in complex cubic-quintic Ginzburg-Landau equation
    Aleksic, N. B.
    Pavlovic, G.
    Aleksic, B. N.
    Skarka, V.
    ACTA PHYSICA POLONICA A, 2007, 112 (05) : 941 - 947
  • [39] Influence of Dirichlet boundary conditions on dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation
    Descalzi, Orazio
    Brand, Helmut R.
    PHYSICAL REVIEW E, 2010, 81 (02)
  • [40] Diverse optical solitons to the complex Ginzburg-Landau equation with Kerr law nonlinearity in the nonlinear optical fiber
    Wang, Kang-Jia
    Si, Jing
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03):