Motion-Aware Gradient Domain Video Composition

被引:19
|
作者
Chen, Tao [1 ]
Zhu, Jun-Yan [1 ]
Shamir, Ariel [2 ]
Hu, Shi-Min [1 ]
机构
[1] Tsinghua Univ, TNList, Dept Comp Sci, Beijing 100084, Peoples R China
[2] Interdisciplinary Ctr, IL-46150 Herzliyya, Israel
基金
国家高技术研究发展计划(863计划); 以色列科学基金会;
关键词
Gradient domain; mean-value coordinates; Poisson equation; seamless cloning; video editing;
D O I
10.1109/TIP.2013.2251642
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For images, gradient domain composition methods like Poisson blending offer practical solutions for uncertain object boundaries and differences in illumination conditions. However, adapting Poisson image blending to video presents new challenges due to the added temporal dimension. In video, the human eye is sensitive to small changes in blending boundaries across frames and slight differences in motions of the source patch and target video. We present a novel video blending approach that tackles these problems by merging the gradient of source and target videos and optimizing a consistent blending boundary based on a user-provided blending trimap for the source video. Our approach extends mean-value coordinates interpolation to support hybrid blending with a dynamic boundary while maintaining interactive performance. We also provide a user interface and source object positioning method that can efficiently deal with complex video sequences beyond the capabilities of alpha blending.
引用
收藏
页码:2532 / 2544
页数:13
相关论文
共 50 条
  • [41] LEARNING MOTION-AWARE POLICIES FOR ROBUST VISUAL TRACKING
    Wang, Qianqian
    Zhuang, Liansheng
    Wang, Ning
    Zhou, Wengang
    Li, Houqiang
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1786 - 1791
  • [42] Motion-Aware Correlation Filters for Online Visual Tracking
    Zhang, Yihong
    Yang, Yijin
    Zhou, Wuneng
    Shi, Lifeng
    Li, Demin
    SENSORS, 2018, 18 (11)
  • [43] Motion-Aware Optical Camera Communication With Event Cameras
    Su, Hang
    Gao, Ling
    Liu, Tao
    Kneip, Laurent
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (02): : 1385 - 1392
  • [44] Motion-Aware Robotic 3D Ultrasound
    Jiang, Zhongliang
    Wang, Hanyu
    Li, Zhenyu
    Grimm, Matthias
    Zhou, Mingchuan
    Eck, Ulrich
    Brecht, Sandra, V
    Lueth, Tim C.
    Wendler, Thomas
    Navab, Nassir
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 12494 - 12500
  • [45] Motion-Aware Dynamic Architecture for Efficient Frame Interpolation
    Choi, Myungsub
    Lee, Suyoung
    Kim, Heewon
    Lee, Kyoung Mu
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 13819 - 13828
  • [46] Robust Visual Tracking with Motion-Aware and Automatic Temporal Regularization
    Heng Yuan
    Huan Qi
    Neural Processing Letters, 2023, 55 : 3471 - 3488
  • [47] A Semantic and Motion-Aware Spatiotemporal Transformer Network for Action Detection
    Korban, Matthew
    Youngs, Peter
    Acton, Scott T.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (09) : 6055 - 6069
  • [48] Robust Visual Tracking with Motion-Aware and Automatic Temporal Regularization
    Yuan, Heng
    Qi, Huan
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 3471 - 3488
  • [49] A Motion-Aware Siamese Framework for Unmanned Aerial Vehicle Tracking
    Sun, Lifan
    Zhang, Jinjin
    Yang, Zhe
    Fan, Bo
    DRONES, 2023, 7 (03)
  • [50] Motion-aware noise filtering for deblurring of noisy and blurry images
    Tai, Yu-Wing
    Lin, Stephen
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 17 - 24