DESIGN, MODELLING AND ANALYSIS OF A COMBINED SEMI-SUBMERSIBLE FLOATING WIND TURBINE AND WAVE ENERGY POINT-ABSORBER

被引:0
|
作者
Touzon Gonzalez, Imanol [1 ]
Ricci, Pierpaolo [2 ]
Sanchez Lara, Miren Josune [1 ]
Perez Moran, German [1 ]
Boscolo Papo, Francesco [1 ]
机构
[1] Tecnalia, Derio, Bizkaia, Spain
[2] Global Maritime Consultancy Ltd, London, England
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Floating platforms for offshore wind tend to be very expensive and different solutions have been proposed to increase their cost-effectiveness. One of them involves the combination of offshore wind generation with other forms of ocean renewable energy, as is the subject of the FP7 project Marina Platform. In particular, wave energy from the sea has been investigated since the '70s and although a few technologies have already reached a pre-commercial stage, their actual economic feasibility can still be questioned so that the possibility of sharing cables, moorings and even the structure with offshore wind turbine is very interesting also from the point of view of wave energy developers. This paper presents the design, modeling and analysis of a combined concept composed of a semi-submersible platform hosting a single 5 MW wind turbine and a heaving point-absorber consisting of a floating cylinder placed at the geometric center of the platform. A preliminary design of the concept is carried out by a frequency-domain analysis focused on the definition of the most suitable geometry with the objective of a limited dynamic response of the platform and satisfactory wave power absorption at the same time. It is shown how the requirement of maintaining reduced amplitude on the platform motions imposes the adoption of relatively slender cylinders as point-absorbers. After a conventional catenary mooring arrangement is assumed and its basic line parameters determined by applying a quasi-static approach, a global coupled time-domain model is built based on the Cummins equation and the use of panel codes (e.g. WAMIT, AQWA) for the computation of the hydrodynamic coefficients. Moorings are modeled as individual catenary lines whereas the dynamics of the wind turbine are modeled by introducing thrust and power curves as function of the motions of the platform, after previous determination with the Blade Element Momentum theory. The analysis is carried out over a set of operational sea states for different locations around Europe. Through the analysis of power performance, platform and point-absorber motions and mooring tensions, it is shown how the introduction of a Wave Energy Converter (WEC) can occasionally have a positive effect on the whole response of the platform though the significance of its energy contribution is relatively small and additional synergies have to be sought to justify its adoption.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Power Performance and Response Analysis of a Semi-Submersible Wind Turbine Combined With Flap-Type and Torus Wave Energy Converters
    Lee, Chern Fong
    Tryfonidis, Christodoulos
    Ong, Muk Chen
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (04):
  • [32] NUMERICAL AND EXPERIMENTAL WIND TUNNEL ANALYSIS OF AERODYNAMIC EFFECTS ON A SEMI-SUBMERSIBLE FLOATING WIND TURBINE RESPONSE
    Fontanella, Alessandro
    Bayati, Ilmas
    Taruffi, Federico
    Facchinetti, Alan
    Belloli, Marco
    PROCEEDINGS OF THE ASME 38TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2019, VOL 10, 2019,
  • [33] Conceptualization and dynamic response of an integrated system with a semi-submersible floating wind turbine and two types of wave energy converters
    Zhang, Hongjian
    Zhang, Ningchuan
    Cao, Xinyu
    OCEAN ENGINEERING, 2023, 269
  • [34] MODELING AND ANALYSIS OF A 5 MW SEMI-SUBMERSIBLE WIND TURBINE COMBINED WITH THREE FLAP-TYPE WAVE ENERGY CONVERTERS
    Luan, Chenyu
    Michailides, Constantine
    Gao, Zhen
    Moan, Torgeir
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 9B: OCEAN RENEWABLE ENERGY, 2014,
  • [35] Aerodynamic performance of semi-submersible floating wind turbine under pitch motion
    Shi, Weiyuan
    Jiang, Jin
    Sun, Ke
    Ju, Quanyong
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 48
  • [36] Validation of drift motions for a semi-submersible floating wind turbine and associated challenges
    Mahfouz, M. Y.
    Faerron-Guzman, R.
    Mueller, K.
    Lemmer, F.
    Cheng, P. W.
    EERA DEEPWIND'2020, 2020, 1669
  • [37] MODELLING AND ANALYSIS OF A SEMI-SUBMERSIBLE WIND TURBINE WITH A CENTRAL TOWER WITH EMPHASIS ON THE BRACE SYSTEM
    Luan, Chenyu
    Gao, Zhen
    Moan, Torgeir
    PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 8, 2013,
  • [38] Investigation of a semi-submersible floating wind turbine in surge decay using CFD
    Burmester, Simon
    Vaz, Guilherme
    Gueydon, Sebastien
    el Moctar, Ould
    SHIP TECHNOLOGY RESEARCH, 2020, 67 (01) : 2 - 14
  • [39] COMPARISON AND VALIDATION OF HYDRODYNAMIC LOAD MODELS FOR A SEMI-SUBMERSIBLE FLOATING WIND TURBINE
    Hegseth, John Marius
    Bachynski, Erin E.
    Karimirad, Madjid
    PROCEEDINGS OF THE ASME 37TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2018, VOL 10, 2018,
  • [40] THE INFLUENCE OF THE MOORING SYSTEM ON THE MOTIONS AND STABILITY OF A SEMI-SUBMERSIBLE FLOATING WIND TURBINE
    Huijs, Fons
    PROCEEDINGS OF THE ASME 34TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2015, VOL 9, 2015,