Machine Learning for Digital Pulse Shape Discrimination

被引:0
|
作者
Sanderson, T. S. [1 ]
Scott, C. D. [1 ]
Flaska, M. [2 ]
Polack, J. K. [2 ]
Pozzi, S. A. [2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Computat Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Nucl Engn & Radiol Sci, Detect Nucl Nonproliferat Grp, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate discrimination of neutrons and gamma rays is critical for organic scintillation detectors, especially for detection systems where minimal false-alarm rates are paramount (nuclear non-proliferation). Poor pulse shape discrimination (PSD) necessitates long measurement times, and may also cause inaccurate characterization of emitted neutrons, leading to source misidentification. Digital, data-acquisition, measurement systems using a charge-integration PSD method are commonly used for particle classification. A 2-D, charge-integration PSD method tends to be reasonably accurate, although the separation is typically poor at lower energies (below similar to 500-keV neutron energy deposited). The charge-integration method originated in analog systems; however, with digital measurement systems there is no need to restrict to only two features (for instance, tail and total integrals) of the pulse. Instead, a classifier may be a much more complex function of the measured pulse. In this work, we apply a machine-learning methodology; namely, the support vector machine (SVM), to determine a PSD classifier. We show that the SVM method leads to improved detection performance with respect to the charge-integration method. We also apply a recently developed methodology that gives more accurate performance estimates by accounting for the fact that the training data needed for the SVM are 'contaminated'.
引用
收藏
页码:199 / 202
页数:4
相关论文
共 50 条
  • [11] Digital pulse-shape discrimination of fast neutrons and γ rays
    Soderstrom, P. -A.
    Nyberg, J.
    Wolters, R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2008, 594 (01): : 79 - 89
  • [12] Comparison of analog and digital pulse-shape-discrimination systems
    Sosa, C. S.
    Flaska, M.
    Pozzi, S. A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 826 : 72 - 79
  • [13] A digital method for pulse-shape discrimination between particles
    M. V. Prokuronov
    A. A. Golubev
    V. S. Demidov
    I. V. Rudskoi
    G. N. Smirnov
    N. A. Khaldeeva
    A. N. Shabalin
    S. A. Shubin
    Instruments and Experimental Techniques, 2006, 49 : 207 - 222
  • [14] A General-Purpose Digital Pulse Shape Discrimination Algorithm
    Nakhostin, M.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (05) : 838 - 845
  • [15] PULSE SHAPE DISCRIMINATION
    VARGA, L
    NUCLEAR INSTRUMENTS & METHODS, 1961, 14 (01): : 24 - 32
  • [16] PULSE SHAPE DISCRIMINATION
    ROUSH, ML
    WILSON, MA
    HORNYAK, WF
    NUCLEAR INSTRUMENTS & METHODS, 1964, 31 (01): : 112 - 124
  • [17] Deep learning based pulse shape discrimination for germanium detectors
    Holl, P.
    Hauertmann, L.
    Majorovits, B.
    Schulz, O.
    Schuster, M.
    Zsigmond, A. J.
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (06):
  • [18] Deep learning based pulse shape discrimination for germanium detectors
    P. Holl
    L. Hauertmann
    B. Majorovits
    O. Schulz
    M. Schuster
    A. J. Zsigmond
    The European Physical Journal C, 2019, 79
  • [19] Hybrid method for digital pulse shape discrimination in organic scintillation detectors
    Taqavi-Moqaddam, E.
    Safari, M. J.
    Davani, F. Abbasi
    JOURNAL OF INSTRUMENTATION, 2019, 14 (10)
  • [20] Distance metrics for digital pulse-shape discrimination of scintillator detectors
    Alharbi, T.
    RADIATION PHYSICS AND CHEMISTRY, 2019, 156 : 205 - 209