Comparison between methods of analytical continuation for bosonic functions

被引:14
|
作者
Schott, J. [1 ]
van Loon, E. G. C. P. [2 ]
Locht, I. L. M. [1 ,2 ]
Katsnelson, M. I. [2 ]
Di Marco, I. [1 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[2] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
基金
瑞典研究理事会;
关键词
QUANTUM MONTE-CARLO; MAXIMUM-ENTROPY; SPATIAL CORRELATIONS; HUBBARD; SYSTEMS;
D O I
10.1103/PhysRevB.94.245140
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we perform a critical assessment of different known methods for the analytical continuation of bosonic functions, namely, the maximum entropy method, the non-negative least-squares method, the non-negative Tikhonov method, the Pade approximant method, and a stochastic sampling method. Four functions of different shape are investigated, corresponding to four physically relevant scenarios. They include a simple two-pole model function; two flavors of the tight-binding model on a square lattice, i.e., a single-orbital metallic system and a two-orbital insulating system; and the Hubbard dimer. The effect of numerical noise in the input data on the analytical continuation is discussed in detail. Overall, the stochastic method by A. S. Mishchenko et al. [Phys. Rev. B 62, 6317 (2000)] is shown to be the most reliable tool for input data whose numerical precision is not known. For high-precision input data, this approach is slightly outperformed by the Pade approximant method, which combines a good-resolution power with a good numerical stability. Although none of the methods retrieves all features in the spectra in the presence of noise, our analysis provides a useful guideline for obtaining reliable information of the spectral function in cases of practical interest.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] COMPARISON OF ANALYTICAL METHODS FOR SOIL ZINE
    BROWN, AL
    QUICK, J
    EDDINGS, JL
    SOIL SCIENCE SOCIETY OF AMERICA PROCEEDINGS, 1971, 35 (01): : 105 - +
  • [42] A COMPARISON OF ANALYTICAL METHODS FOR IRON METEORITES
    Utas, J. A.
    Zhang, B.
    Young, E. D.
    METEORITICS & PLANETARY SCIENCE, 2023, 58 : A302 - A302
  • [43] Phenolics: A comparison of diverse analytical methods
    De Beer, D
    Harbertson, JF
    Kilmartin, PA
    Roginsky, V
    Barsukova, T
    Adams, DO
    Waterhouse, AL
    AMERICAN JOURNAL OF ENOLOGY AND VITICULTURE, 2004, 55 (04): : 389 - 400
  • [44] SPERM VIABILITY - A COMPARISON OF ANALYTICAL METHODS
    SCHRADER, SM
    PLATEK, SF
    ZANEVELD, LJD
    PEREZPELAEZ, M
    JEYENDRAN, RS
    ANDROLOGIA, 1986, 18 (05) : 530 - 538
  • [45] Continuation of Polyanalytic Functions
    T. Ishankulov
    D. Sh. Fozilov
    Russian Mathematics, 2021, 65 : 32 - 39
  • [46] Continuation of Polyanalytic Functions
    Ishankulov, T.
    Fozilov, D. Sh
    RUSSIAN MATHEMATICS, 2021, 65 (08) : 32 - 39
  • [47] CONTINUATION OF ANALYTIC FUNCTIONS
    SHAPIRO, HS
    KENNEDY, PB
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (01): : 94 - &
  • [48] ON THE CONTINUATION OF MEROMORPHIC FUNCTIONS
    JARVI, P
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1987, 12 (02): : 177 - 184
  • [49] On continuation functions with singularities
    Shirinbekov, M
    DOKLADY AKADEMII NAUK, 1997, 353 (03) : 310 - 312
  • [50] ON THE CONTINUATION OF ANALYTIC FUNCTIONS
    WOLF, F
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (09) : 821 - 822