Comparison between methods of analytical continuation for bosonic functions

被引:14
|
作者
Schott, J. [1 ]
van Loon, E. G. C. P. [2 ]
Locht, I. L. M. [1 ,2 ]
Katsnelson, M. I. [2 ]
Di Marco, I. [1 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[2] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
基金
瑞典研究理事会;
关键词
QUANTUM MONTE-CARLO; MAXIMUM-ENTROPY; SPATIAL CORRELATIONS; HUBBARD; SYSTEMS;
D O I
10.1103/PhysRevB.94.245140
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we perform a critical assessment of different known methods for the analytical continuation of bosonic functions, namely, the maximum entropy method, the non-negative least-squares method, the non-negative Tikhonov method, the Pade approximant method, and a stochastic sampling method. Four functions of different shape are investigated, corresponding to four physically relevant scenarios. They include a simple two-pole model function; two flavors of the tight-binding model on a square lattice, i.e., a single-orbital metallic system and a two-orbital insulating system; and the Hubbard dimer. The effect of numerical noise in the input data on the analytical continuation is discussed in detail. Overall, the stochastic method by A. S. Mishchenko et al. [Phys. Rev. B 62, 6317 (2000)] is shown to be the most reliable tool for input data whose numerical precision is not known. For high-precision input data, this approach is slightly outperformed by the Pade approximant method, which combines a good-resolution power with a good numerical stability. Although none of the methods retrieves all features in the spectra in the presence of noise, our analysis provides a useful guideline for obtaining reliable information of the spectral function in cases of practical interest.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] ANALYTICAL CONTINUATION OF LAPLACE TRANSFORMATIONS OF A CLASS OF ANALYTICAL FUNCTIONS
    RUSSEV, PK
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1979, 32 (06): : 719 - 720
  • [2] Bosonic Nevanlinna Analytic Continuation
    Nogaki, Kosuke
    Shinaoka, Hiroshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2023, 92 (03)
  • [3] An essay on the analytical continuation of fast periodical functions.
    Bohr, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1926, 157 (1/4): : 61 - 65
  • [4] Diffraction by a quarterplane. Analytical continuation of spectral functions
    Assier, R. C.
    Shanin, A. V.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2019, 72 (01): : 51 - 86
  • [5] Analytical continuation of matrix-valued functions: Caratheodory formalism
    Fei, Jiani
    Yeh, Chia-Nan
    Zgid, Dominika
    Gull, Emanuel
    PHYSICAL REVIEW B, 2021, 104 (16)
  • [6] Solution and comparison of high order term of analytical continuation
    Zhai, Zhenhe
    Wang, Xingtao
    Li, Yingchun
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2015, 40 (01): : 134 - 138
  • [7] COMPARISON OF ANALYTICAL METHODS
    BEILBY, AL
    JOURNAL OF CHEMICAL EDUCATION, 1972, 49 (10) : 679 - &
  • [8] COMPARISON OF ANALYTICAL METHODS
    KORMENDY, L
    MIHALYI, V
    ZUKAL, E
    CSIBA, A
    MEAT SCIENCE, 1989, 26 (03) : 193 - 207
  • [10] Quantification Bence Jones Protein: Comparison between analytical methods
    Demarinis, L.
    Lamanna, A.
    Marinaccio, A.
    De Francesco, S.
    Specchia, I.
    Di Serio, F.
    Troiano, T.
    CLINICA CHIMICA ACTA, 2019, 493 : S26 - S26