Galerkin projected residual method applied to diffusion-reaction problems

被引:3
|
作者
Dutra do Carmo, Eduardo Gomes [1 ]
Alvarez, Gustavo Benitez [2 ]
Rochinha, Fernando Alves [1 ]
Dourado Loula, Abimael Fernando [3 ]
机构
[1] Univ Fed Rio de Janeiro, Ilha Fundao, COPPE, BR-21945970 Rio De Janeiro, Brazil
[2] Univ Fed Fluminense, UFF EEIMVR, BR-27225125 Volta Redonda, RJ, Brazil
[3] Lab Nacl Comp Cient, LNCC, BR-25651070 Petropolis, RJ, Brazil
关键词
Stabilization; GLS; GPR; Diffusion-reaction equation; Finite element method; Second-order boundary value problems;
D O I
10.1016/j.cma.2008.05.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A stabilized finite element method is presented for scalar and linear second-order boundary value problems. The method is obtained by adding to the Galerkin formulation multiple projections of the residual of the differential equation at element level. These multiple projections allow the generation of appropriate number of free stabilization parameters in the element matrix depending on the local space of approximation and on the differential operator. The free parameters can be determined imposing some convergence and/or stability criteria or by postulating the element matrix with the desired stability properties. The element matrix of most stabilized methods (such as, GLS and GGLS methods) can be obtained using this new method with appropriate choices of the stabilization parameters. We applied this formulation to diffusion-reaction problems. Optimal rates of convergency are numerically observed for regular solutions. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4559 / 4570
页数:12
相关论文
共 50 条
  • [1] Application of a new method of discretization to diffusion-reaction problems
    Onyejekwe, O.O.
    Kuwornoo, D.K.
    [J]. International Journal of Modelling and Simulation, 2000, 20 (03): : 192 - 199
  • [2] DIFFERENTIAL QUADRATURE METHOD FOR SOME DIFFUSION-REACTION PROBLEMS
    Szukiewicz, Miroslaw K.
    [J]. CHEMICAL AND PROCESS ENGINEERING-INZYNIERIA CHEMICZNA I PROCESOWA, 2020, 41 (01): : 3 - 11
  • [3] A GREEN-FUNCTION METHOD FOR THE SOLUTION OF DIFFUSION-REACTION PROBLEMS
    VRENTAS, JS
    VRENTAS, CM
    [J]. AICHE JOURNAL, 1988, 34 (02) : 347 - 348
  • [4] A network element method for heterogeneous and anisotropic diffusion-reaction problems
    Coatleven, Julien
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 470
  • [5] The optimal control applied to diffusion-reaction models
    Pujol, MJ
    Sánchez, JA
    Grimalt, P
    [J]. COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS X, 2001, 3 : 135 - 144
  • [6] A MODIFIED ONE-POINT COLLOCATION METHOD FOR DIFFUSION-REACTION PROBLEMS
    SOLIMAN, MA
    [J]. CHEMICAL ENGINEERING SCIENCE, 1988, 43 (05) : 1198 - 1199
  • [7] MOMENT EXPRESSIONS FOR SOME DIFFUSION-REACTION PROBLEMS
    MCNABB, A
    BASS, L
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (9-10) : 163 - 168
  • [8] GROWTH-ESTIMATES IN DIFFUSION-REACTION PROBLEMS
    SPERB, RP
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1981, 75 (02) : 127 - 145
  • [9] Existence results for a class of diffusion-reaction problems
    Garner, JB
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1998, 89 (1-3) : 111 - 118
  • [10] A VIRTUAL VOLUME METHOD FOR HETEROGENEOUS AND ANISOTROPIC DIFFUSION-REACTION PROBLEMS ON GENERAL MESHES
    Coatleven, Julien
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 797 - 824