An Update on Mitochondrial Reactive Oxygen Species Production

被引:186
|
作者
Mailloux, Ryan J. [1 ]
机构
[1] McGill Univ, Sch Human Nutr, Fac Agr & Environm Sci, 21111 Lakeshore Rd, Ste Anne De Bellevue, PQ H9X 3V9, Canada
关键词
mitochondria; reactive oxygen species; bioenergetics; hydrogen peroxide; sex differences; substrate preferences; isopotential groups; PYRUVATE-DEHYDROGENASE COMPLEX; SUPEROXIDE/HYDROGEN PEROXIDE; REPERFUSION INJURY; HYDROGEN-PEROXIDE; GENERATION; SUCCINATE; ACCUMULATION; DEFICIENCY; RELEASE; CHAIN;
D O I
10.3390/antiox9060472
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are quantifiably the most important sources of superoxide (O-2(BLACK CIRCLE-)) and hydrogen peroxide (H2O2) in mammalian cells. The overproduction of these molecules has been studied mostly in the contexts of the pathogenesis of human diseases and aging. However, controlled bursts in mitochondrial ROS production, most notably H2O2, also plays a vital role in the transmission of cellular information. Striking a balance between utilizing H(2)O(2)in second messaging whilst avoiding its deleterious effects requires the use of sophisticated feedback control and H(2)O(2)degrading mechanisms. Mitochondria are enriched with H(2)O(2)degrading enzymes to desensitize redox signals. These organelles also use a series of negative feedback loops, such as proton leaks or proteinS-glutathionylation, to inhibit H(2)O(2)production. Understanding how mitochondria produce ROS is also important for comprehending how these organelles use H(2)O(2)in eustress signaling. Indeed, twelve different enzymes associated with nutrient metabolism and oxidative phosphorylation (OXPHOS) can serve as important ROS sources. This includes several flavoproteins and respiratory complexes I-III. Progress in understanding how mitochondria generate H(2)O(2)for signaling must also account for critical physiological factors that strongly influence ROS production, such as sex differences and genetic variances in genes encoding antioxidants and proteins involved in mitochondrial bioenergetics. In the present review, I provide an updated view on how mitochondria budget cellular H(2)O(2)production. These discussions will focus on the potential addition of two acyl-CoA dehydrogenases to the list of ROS generators and the impact of important phenotypic and physiological factors such as tissue type, mouse strain, and sex on production by these individual sites.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Interplay of mitochondrial calcium signalling and reactive oxygen species production in the brain
    Angelova, Plamena R.
    Abramov, Andrey Y.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2024, 52 (04) : 1939 - 1946
  • [22] The effect of inactin on kidney mitochondrial function and production of reactive oxygen species
    Schiffer, Tomas A.
    Christensen, Michael
    Gustafsson, Hakan
    Palm, Fredrik
    PLOS ONE, 2018, 13 (11):
  • [23] MITOCHONDRIAL RESPIRATORY SUPERCOMPLEXES LIMIT REACTIVE OXYGEN SPECIES (ROS) PRODUCTION
    Cerutti, M. L.
    Otero, L. H.
    Klinke, S.
    Smal, C.
    Pelliza, L.
    Cicero, D. O.
    Goldbaum, F. A.
    Aran, M.
    BIOCELL, 2014, 38 : 180 - 180
  • [24] Mitochondrial dysfunction in preeclampsia demonstrated by increased reactive oxygen species production
    McMaster, Kristen
    Vaka, Venkata
    LaMarca, Babbette
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2018, 218 (01) : S209 - S210
  • [25] Reactive oxygen species production by flavin dehydrogenases of the mitochondrial respiratory chain
    Mracek, T.
    Holzerova, E.
    Kovarova, N.
    Jesina, P.
    Drahota, Z.
    Houstek, J.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2012, 1817 : S100 - S101
  • [26] Reactive oxygen species and mitochondrial diseases
    Kirkinezos, IG
    Moraes, CT
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2001, 12 (06) : 449 - 457
  • [27] Mitochondrial metabolism of reactive oxygen species
    Andreyev, AI
    Kushnareva, YE
    Starkov, AA
    BIOCHEMISTRY-MOSCOW, 2005, 70 (02) : 200 - 214
  • [28] Mitochondrial reactive oxygen species and cancer
    Lucas B Sullivan
    Navdeep S Chandel
    Cancer & Metabolism, 2 (1)
  • [29] Mitochondrial Management of Reactive Oxygen Species
    Napolitano, Gaetana
    Fasciolo, Gianluca
    Venditti, Paola
    ANTIOXIDANTS, 2021, 10 (11)
  • [30] Mitochondrial reactive oxygen species and cancer
    Sullivan, Lucas B.
    Chandel, Navdeep S.
    CANCER & METABOLISM, 2014, 2