REMARKS ON l1 AND l∞-MAXIMAL REGULARITY FOR POWER-BOUNDED OPERATORS

被引:20
|
作者
Kalton, N. J. [2 ]
Portal, P. [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
power-bounded operators; Ritt's condition; maximal regularity; H-infinity; square function;
D O I
10.1017/S1446788708000712
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss l(p)-maximal regularity of power-bounded operators and relate the discrete to the continuous time problem for analytic semigroups. We give a complete characterization of operators with l(1), and l(infinity)-maximal regularity. We also introduce an unconditional form of Ritt's condition for power-bounded operators, which plays the role of the existence of an H-infinity-calculus, and give a complete characterization of this condition in the case of Banach spaces which are L-1-spaces, C(K)-spaces or Hilbert spaces.
引用
收藏
页码:345 / 365
页数:21
相关论文
共 50 条
  • [41] ON THE DOMAINS OF ELLIPTIC OPERATORS IN L1
    Lunardi, Alessandra
    Metafune, Giorgio
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2004, 17 (1-2) : 73 - 97
  • [42] More on representation of operators on L1
    Maslyuchenko, Oleksandr
    Popov, Mikhail
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (02) : 679 - 689
  • [43] A decomposition theorem for operators on L1
    Liu, ZX
    JOURNAL OF OPERATOR THEORY, 1998, 40 (01) : 3 - 34
  • [44] Gaussian bounds of fundamental matrix and maximal L1 regularity for Lame system with rough coefficients
    Xu, Huan
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)
  • [45] Endpoint regularity of discrete multisublinear fractional maximal operators associated with l1-balls
    Liu, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [46] On the sum of the L1 influences of bounded functions
    Yuval Filmus
    Hamed Hatami
    Nathan Keller
    Noam Lifshitz
    Israel Journal of Mathematics, 2016, 214 : 167 - 192
  • [47] Embedding bounded bandwidth graphs into l1
    Carroll, Douglas E.
    Goel, Ashish
    Meyerson, Adam
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, 2006, 4051 : 27 - 37
  • [48] Weak coercivity of systems of differential operators in L1 and L∞
    Limanskii, DV
    Malamud, MM
    DOKLADY MATHEMATICS, 2004, 70 (01) : 584 - 588
  • [49] COMPLEXIFICATION OF OPERATORS FROM L-INFINITY INTO L1
    KRIVINE, JL
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (06): : 377 - 379
  • [50] l∞(l1) and l1(l∞) are not isomorphic
    Cembranos, Pilar
    Mendoza, Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 295 - 297