COPIES OF c0(Γ) IN C(K, X) SPACES

被引:0
|
作者
Galego, Eloi Medina [1 ]
Hagler, James N. [2 ]
机构
[1] Univ Sao Paulo, Dept Math, BR-05508090 Sao Paulo, Brazil
[2] Univ Denver, Dept Math, Denver, CO 80208 USA
关键词
c(0)(Gamma) spaces; C(K; X); spaces; Josefson-Nissenzweig-alpha (JN(alpha)) property; BANACH-SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend some results of Rosenthal, Cembranos, Freniche, E. Saab-P. Saab and Ryan to study the geometry of copies and complemented copies of c(0)(Gamma) in the classical Banach spaces C(K, X) in terms of the carclinality of the set Gamma, of the density and caliber of K and of the geometry of X and its dual space X*. Here are two sample consequences of our results: (1) If C([0, 1], X) contains a copy of c(0)(N-1), then X contains a copy of c(0)(N-1). (2) C(beta N, X) contains a complemented copy of c(0)(N-1) if and only if X contains a copy of c(0)(N-1). Some of our results depend on set-theoretic assumptions. For example, we prove that it is relatively consistent with ZFC that if C(K) contains a copy of c(0)(N-1) and X has dimension NI, then C(K, X) contains a complemented copy of cc(0)(N-1).
引用
收藏
页码:3843 / 3852
页数:10
相关论文
共 50 条
  • [31] BASIC RESULTS ON SPACES C0(X)
    NAGEL, R
    SCHLOTTERBECK, U
    LECTURE NOTES IN MATHEMATICS, 1986, 1184 : 117 - 121
  • [32] QUASI-ISOMETRIES ON SUBSETS OF C0(K) AND C0(1) (K) SPACES WHICH DETERMINE K
    Galego, Eloi Medina
    Porto Da Silva, Andre Luis
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3455 - 3470
  • [33] C(K) spaces which cannot be uniformly embedded into c0(Γ)
    Pelant, Jan
    Holicky, Petr
    Kalenda, Ondrej F. K.
    FUNDAMENTA MATHEMATICAE, 2006, 192 (03) : 245 - 254
  • [34] Extension operators and twisted sums of c0 and C(K) spaces
    Marciszewski, Witold
    Plebanek, Grzegorz
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (05) : 1491 - 1529
  • [35] Lattice copies of c0 and l∞ in spaces of integrable functions for a vector measure
    Okada, S.
    Ricker, W. J.
    Sanchez Perez, E. A.
    DISSERTATIONES MATHEMATICAE, 2014, (500) : 5 - +
  • [36] The Banach spaces l∞(c0) and c0(l∞) are not isomorphic
    Cembranos, Pilar
    Mendoza, Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (02) : 461 - 463
  • [37] ASYMPTOTICALLY ISOMETRIC COPIES OF lP (1≤P<∞) AND c0 IN BANACH SPACES
    陈东阳
    Acta Mathematica Scientia, 2006, (02) : 281 - 290
  • [38] COPIES OF c0(τ) IN SAPHAR TENSOR PRODUCTS
    Cortes, Vinicius Morelli
    MATHEMATICA SCANDINAVICA, 2022, 128 (03) : 573 - 588
  • [39] Spaces of operators and c0
    Lewis, P
    STUDIA MATHEMATICA, 2001, 145 (03) : 213 - 218
  • [40] Search for X(3872) → π0χc0 and X(3872) → ππχc0 at BESIII
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, X. H.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Chu, X.
    Cibinetto, G.
    PHYSICAL REVIEW D, 2022, 105 (07)