Multi Objective Symbolic Regression

被引:2
|
作者
Hinde, C. J. [1 ]
Chakravorti, N. [1 ]
West, A. A. [1 ]
机构
[1] Univ Loughborough, Loughborough, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-319-46562-3_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic regression has been a popular technique for some time. Systems typically evolve using a single objective fitness function, or where the fitness function is multi-objective the factors are combined using a weighted sum. This work uses a Non Dominated Sorting Strategy to rank the genomes. Using data derived from Swimming turns performed by elite athletes more information and better expressions can be generated than by using single, or even double objective functions. Symbolic regression, multi-objective, non dominated sorting, genetic programming.
引用
收藏
页码:481 / 494
页数:14
相关论文
共 50 条
  • [1] Complexity Measures for Multi-objective Symbolic Regression
    Kommenda, Michael
    Beham, Andreas
    Affenzeller, Michael
    Kronberger, Gabriel
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2015, 2015, 9520 : 409 - 416
  • [2] Parsimony Measures in Multi-objective Genetic Programming for Symbolic Regression
    Burlacu, Bogdan
    Kronberger, Gabriel
    Kommenda, Michael
    Affenzeller, Michael
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 338 - 339
  • [3] Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic Regression
    Liu, Dazhuang
    Virgolin, Marco
    Alderliesten, Tanja
    Bosman, Peter A. N.
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 973 - 981
  • [4] Multi-objective symbolic regression for physics-aware dynamic modeling
    Kubalik, Jiri
    Derner, Erik
    Babuska, Robert
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 182
  • [5] Shape-constrained multi-objective genetic programming for symbolic regression
    Haider, C.
    de Franca, F. O.
    Burlacu, B.
    Kronberger, G.
    APPLIED SOFT COMPUTING, 2023, 132
  • [6] Symbolic regression via a multi-objective artificial fish school algorithm
    Liu Q.
    Ren H.-P.
    Yao J.-L.
    Liu L.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (02): : 340 - 354
  • [7] Multi-region symbolic regression: combining functions under a multi-objective approach
    Felipe Casadei
    Gisele L. Pappa
    Natural Computing, 2021, 20 : 753 - 773
  • [8] Multi-region symbolic regression: combining functions under a multi-objective approach
    Casadei, Felipe
    Pappa, Gisele L.
    NATURAL COMPUTING, 2021, 20 (04) : 753 - 773
  • [9] Multi-objective Genetic Programming with the Adaptive Weighted Splines Representation for Symbolic Regression
    Raymond, Christian
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    GENETIC PROGRAMMING (EUROGP 2022), 2022, : 51 - 67
  • [10] Multi-Objective Symbolic Regression for Data-Driven Scoring System Management
    Ferrari, Davide
    Guidetti, Veronica
    Mandreoli, Federica
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 945 - 950