Parsimony Measures in Multi-objective Genetic Programming for Symbolic Regression

被引:7
|
作者
Burlacu, Bogdan [1 ]
Kronberger, Gabriel [1 ]
Kommenda, Michael [1 ]
Affenzeller, Michael [2 ,3 ]
机构
[1] Univ Appl Sci Upper Austria, Josef Ressel Ctr Symbol Regress, Heurist & Evolutionary Algorithms Lab, Hagenberg, Austria
[2] Johannes Kepler Univ Linz, Inst Formal Models & Verificat, Linz, Austria
[3] Univ Appl Sci Upper Austria, Heurist & Evolutionary Algorithms Lab, Hagenberg, Austria
关键词
genetic programming; symbolic regression; multi-objective optimization; parsimony; diversity; ALGORITHM;
D O I
10.1145/3319619.3322087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate in this paper the suitability of multi-objective algorithms for Symbolic Regression (SR), where desired properties of parsimony and diversity are explicitly stated as optimization goals. We evaluate different secondary objectives such as length, complexity and diversity on a selection of symbolic regression benchmark problems. Our experiments comparing two multi-objective evolutionary algorithms against standard GP show that multi-objective configurations combining diversity and parsimony objectives provide the best balance of numerical accuracy and model parsimony, allowing practitioners to select suitable models from a diverse set of solutions on the Pareto front.
引用
收藏
页码:338 / 339
页数:2
相关论文
共 50 条
  • [1] Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic Regression
    Liu, Dazhuang
    Virgolin, Marco
    Alderliesten, Tanja
    Bosman, Peter A. N.
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 973 - 981
  • [2] Shape-constrained multi-objective genetic programming for symbolic regression
    Haider, C.
    de Franca, F. O.
    Burlacu, B.
    Kronberger, G.
    [J]. APPLIED SOFT COMPUTING, 2023, 132
  • [3] Complexity Measures for Multi-objective Symbolic Regression
    Kommenda, Michael
    Beham, Andreas
    Affenzeller, Michael
    Kronberger, Gabriel
    [J]. COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2015, 2015, 9520 : 409 - 416
  • [4] Multi-objective Genetic Programming with the Adaptive Weighted Splines Representation for Symbolic Regression
    Raymond, Christian
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    [J]. GENETIC PROGRAMMING (EUROGP 2022), 2022, : 51 - 67
  • [5] Multi-Objective Memetic Algorithms with Tree-Based Genetic Programming and Local Search for Symbolic Regression
    Jiayu Liang
    Yu Xue
    [J]. Neural Processing Letters, 2021, 53 : 2197 - 2219
  • [6] Multi-Objective Memetic Algorithms with Tree-Based Genetic Programming and Local Search for Symbolic Regression
    Liang, Jiayu
    Xue, Yu
    [J]. NEURAL PROCESSING LETTERS, 2021, 53 (03) : 2197 - 2219
  • [7] Semantics in Multi-objective Genetic Programming
    Galvan, Edgar
    Trujillo, Leonardo
    Stapleton, Fergal
    [J]. APPLIED SOFT COMPUTING, 2022, 115
  • [8] Multi-objective semantic mutation for genetic programming
    Fracasso, Joao Victor C.
    Von Zuben, Fernando J.
    [J]. 2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 2531 - 2538
  • [9] Highlights of Semantics in Multi-objective Genetic Programming
    Galvan, Edgar
    Trujillo, Leonardo
    Stapleton, Fergal
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 19 - 20
  • [10] Multi-objective Genetic Programming for Visual Analytics
    Icke, Ilknur
    Rosenberg, Andrew
    [J]. GENETIC PROGRAMMING, 2011, 6621 : 322 - 334