Structural basis for the blockade of MATE multidrug efflux pumps
被引:82
|
作者:
Radchenko, Martha
论文数: 0引用数: 0
h-index: 0
机构:
Rosalind Franklin Univ Med & Sci, Dept Biochem & Mol Biol, N Chicago, IL 60064 USARosalind Franklin Univ Med & Sci, Dept Biochem & Mol Biol, N Chicago, IL 60064 USA
Radchenko, Martha
[1
]
Symersky, Jindrich
论文数: 0引用数: 0
h-index: 0
机构:
Rosalind Franklin Univ Med & Sci, Dept Biochem & Mol Biol, N Chicago, IL 60064 USARosalind Franklin Univ Med & Sci, Dept Biochem & Mol Biol, N Chicago, IL 60064 USA
Symersky, Jindrich
[1
]
Nie, Rongxin
论文数: 0引用数: 0
h-index: 0
机构:
Rosalind Franklin Univ Med & Sci, Dept Biochem & Mol Biol, N Chicago, IL 60064 USARosalind Franklin Univ Med & Sci, Dept Biochem & Mol Biol, N Chicago, IL 60064 USA
Nie, Rongxin
[1
]
Lu, Min
论文数: 0引用数: 0
h-index: 0
机构:
Rosalind Franklin Univ Med & Sci, Dept Biochem & Mol Biol, N Chicago, IL 60064 USARosalind Franklin Univ Med & Sci, Dept Biochem & Mol Biol, N Chicago, IL 60064 USA
Lu, Min
[1
]
机构:
[1] Rosalind Franklin Univ Med & Sci, Dept Biochem & Mol Biol, N Chicago, IL 60064 USA
Multidrug and toxic compound extrusion (MATE) transporters underpin multidrug resistance by using the H+ or Na+ electrochemical gradient to extrude different drugs across cell membranes. MATE transporters can be further parsed into the DinF, NorM and eukaryotic subfamilies based on their amino-acid sequence similarity. Here we report the 3.0 angstrom resolution X-ray structures of a protonation-mimetic mutant of an H+-coupled DinF transporter, as well as of an H+-coupled DinF and a Na+-coupled NorM transporters in complexes with verapamil, a small-molecule pharmaceutical that inhibits MATE-mediated multidrug extrusion. Combining structure-inspired mutational and functional studies, we confirm the biological relevance of our crystal structures, reveal the mechanistic differences among MATE transporters, and suggest how verapamil inhibits MATE-mediated multidrug efflux. Our findings offer insights into how MATE transporters extrude chemically and structurally dissimilar drugs and could inform the design of new strategies for tackling multidrug resistance.