Human Activity Recognition with Smartphone Inertial Sensors using Bidir-LSTM Networks

被引:40
|
作者
Yu, Shilong [1 ]
Qin, Long [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha, Hunan, Peoples R China
关键词
Human activity recognition; Deep learning; LSTM; Smartphone; Wrist-worn sensors;
D O I
10.1109/ICMCCE.2018.00052
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Owing to its extensive applications in solving real-life, human-centric problems, human activity recognition (HAR) has become an important research area in pervasive computing. Most Human activity recognition researches are based on multi-sensor based approaches which use three or more sensors attached on the different parts of human body. However, many sensors were redundant for specific motions. The more sensors being used, the less convenience the users have. The current generation of portable mobile devices incorporates various types of sensors that open up new areas for the analysis of human behavior. Smartphone can be used for the activity recognition of rehabilitation, aged care and so on. In this paper, we propose a bidirectional LSTM structure for human activity recognition using time series, collected from a smartphone (with the accelerometer and gyroscope embedded on the phone) worn on the waist of human, the best recognition accuracy of which can reach 93.79%.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 50 条
  • [21] Human-Activity Recognition with Smartphone Sensors
    Ilisei, Danut
    Suciu, Dan Mircea
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS, OTM 2019, 2020, 11878 : 179 - 188
  • [22] Human Activity Recognition for the Identification of Bullying and Cyberbullying Using Smartphone Sensors
    Gattulli, Vincenzo
    Impedovo, Donato
    Pirlo, Giuseppe
    Sarcinella, Lucia
    ELECTRONICS, 2023, 12 (02)
  • [23] A Novel Ensemble ELM for Human Activity Recognition Using Smartphone Sensors
    Chen, Zhenghua
    Jiang, Chaoyang
    Xie, Lihua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (05) : 2691 - 2699
  • [24] Effect of Dynamic Feature for Human Activity Recognition using Smartphone Sensors
    Nakano, Kotaro
    Chakraborty, Basabi
    2017 IEEE 8TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST), 2017, : 539 - 543
  • [25] Human Activity Recognition with Inertial Sensors using a Deep Learning Approach
    Zebin, Tahmina
    Scully, Patricia J.
    Ozanyan, Krikor B.
    2016 IEEE SENSORS, 2016,
  • [26] HHARNet: Taking inspiration from Inception and Dense Networks for Human Activity Recognition using Inertial Sensors
    Imran, Hamza Ali
    Latif, Usama
    2020 IEEE 17TH INTERNATIONAL CONFERENCE ON SMART COMMUNITIES: IMPROVING QUALITY OF LIFE USING ICT, IOT AND AI (IEEEHONET 2020), 2020, : 24 - 27
  • [27] Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors
    Vuong, Thi Hong
    Doan, Tung
    Takasu, Atsuhiro
    SENSORS, 2023, 23 (24)
  • [28] Human Action Recognition Using Smartphone Sensors
    Saha, Ashim
    Sharma, Tulika
    Batra, Harshika
    Jain, Anupreksha
    Pal, Vabna
    2020 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2020), 2020, : 238 - 243
  • [29] LSTM Networks for Mobile Human Activity Recognition
    Chen, Yuwen
    Zhong, Kunhua
    Zhang, Ju
    Sun, Qilong
    Zhao, Xueliang
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, 2016, 127
  • [30] An Improved Deep Convolutional LSTM for Human Activity Recognition Using Wearable Sensors
    Zhang, Ningbo
    Song, Yang
    Fang, Dongxu
    Gao, Zhiwei
    Yan, Yajie
    IEEE SENSORS JOURNAL, 2024, 24 (02) : 1717 - 1729