Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging

被引:240
|
作者
Liu, Fang [1 ]
Zhou, Zhaoye [2 ]
Jang, Hyungseok [1 ]
Samsonov, Alexey [1 ]
Zhao, Gengyan [1 ]
Kijowski, Richard [1 ]
机构
[1] Univ Wisconsin, Dept Radiol, Sch Med & Publ Hlth, Madison, WI 53706 USA
[2] Univ Minnesota, Dept Biomed Engn, Minneapolis, MN USA
关键词
deep learning; CNN; segmentation; MRI; musculoskeletal imaging; deformable model; KNEE OSTEOARTHRITIS; ARTICULAR-CARTILAGE; AUTOMATIC SEGMENTATION; MRI; VOLUME;
D O I
10.1002/mrm.26841
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo describe and evaluate a new fully automated musculoskeletal tissue segmentation method using deep convolutional neural network (CNN) and three-dimensional (3D) simplex deformable modeling to improve the accuracy and efficiency of cartilage and bone segmentation within the knee joint. MethodsA fully automated segmentation pipeline was built by combining a semantic segmentation CNN and 3D simplex deformable modeling. A CNN technique called SegNet was applied as the core of the segmentation method to perform high resolution pixel-wise multi-class tissue classification. The 3D simplex deformable modeling refined the output from SegNet to preserve the overall shape and maintain a desirable smooth surface for musculoskeletal structure. The fully automated segmentation method was tested using a publicly available knee image data set to compare with currently used state-of-the-art segmentation methods. The fully automated method was also evaluated on two different data sets, which include morphological and quantitative MR images with different tissue contrasts. ResultsThe proposed fully automated segmentation method provided good segmentation performance with segmentation accuracy superior to most of state-of-the-art methods in the publicly available knee image data set. The method also demonstrated versatile segmentation performance on both morphological and quantitative musculoskeletal MR images with different tissue contrasts and spatial resolutions. ConclusionThe study demonstrates that the combined CNN and 3D deformable modeling approach is useful for performing rapid and accurate cartilage and bone segmentation within the knee joint. The CNN has promising potential applications in musculoskeletal imaging. Magn Reson Med 79:2379-2391, 2018. (c) 2017 International Society for Magnetic Resonance in Medicine.
引用
收藏
页码:2379 / 2391
页数:13
相关论文
共 50 条
  • [31] Design of a Classification Recognition Model for Bone and Muscle Anatomical Imaging Based on Convolutional Neural Network and 3D Magnetic Resonance
    Pan, Ting
    Yang, Yang
    Applied Bionics and Biomechanics, 2022, 2022
  • [32] 3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks
    Xu, Xiaojie
    Liu, Chang
    Zheng, Youyi
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (07) : 2336 - 2348
  • [33] Deep Convolutional Neural Network Design Approach for 3D Object Detection for Robotic Grasping
    Sharma, Purvesh
    Valles, Damian
    2020 10TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2020, : 311 - 316
  • [34] Deformable MRI-Ultrasound Registration Using 3D Convolutional Neural Network
    Sun, Li
    Zhang, Songtao
    SIMULATION, IMAGE PROCESSING, AND ULTRASOUND SYSTEMS FOR ASSISTED DIAGNOSIS AND NAVIGATION, 2018, 11042 : 152 - 158
  • [35] TransAttU-Net Deep Neural Network for BrainTumor Segmentation in Magnetic Resonance Imaging
    Ramamoorthy, Hariharan
    Ramasundaram, Mohan
    Raj, Raja Soosaimarian Peter
    Randive, Krunal
    IEEE CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2023, 46 (04): : 298 - 309
  • [36] 3D dense connectivity network with atrous convolutional feature pyramid for brain tumor segmentation in magnetic resonance imaging of human heads
    Zhou, Zexun
    He, Zhongshi
    Shi, Meifeng
    Du, Jinglong
    Chen, Dingding
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 121
  • [37] A Separate 3D Convolutional Neural Network Architecture for 3D Medical Image Semantic Segmentation
    Dong, Shidu
    Liu, Zhi
    Wang, Huaqiu
    Zhang, Yihao
    Cui, Shaoguo
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (08) : 1705 - 1716
  • [38] Clutter Filtering Using a 3D Deep Convolutional Neural Network
    Tabassian, Mahdi
    Hu, XingRan
    Chakraborty, Bidisha
    D'hooge, Jan
    2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2019, : 2114 - 2117
  • [39] Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach
    Valverde, Sergi
    Cabezas, Mariano
    Roura, Eloy
    Gonzalez-Villa, Sandra
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Oliver, Arnau
    Llado, Xavier
    NEUROIMAGE, 2017, 155 : 159 - 168
  • [40] Reviewing 3D convolutional neural network approaches for medical image segmentation
    Ilesanmi, Ademola E.
    Ilesanmi, Taiwo O.
    Ajayi, Babatunde O.
    HELIYON, 2024, 10 (06)