Evaluation of connectivity constant of Hamiltonian walk on Sierpinski gasket

被引:0
|
作者
Jafarizadeh, MA [1 ]
SeyedYaghoobi, SKA [1 ]
机构
[1] INST STUDIES THEORET PHYS & MATH,TEHRAN,IRAN
来源
关键词
connectivity constant; Hamiltonian walk; random walk; polymer; Sierpinski gasket; three-simplex; entropy;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The connectivity constant mu of Hamiltonian walk on Sierpinski gasket with an arbitrary decimation number b has been given in terms of the number of possible walks in fractals of order M = 2.
引用
下载
收藏
页码:377 / 382
页数:6
相关论文
共 50 条
  • [31] ACYCLIC ORIENTATIONS ON THE SIERPINSKI GASKET
    Chang, Shu-Chiuan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (24):
  • [32] Gas diffusion in a Sierpinski gasket
    Cao, Liyong
    He, Rong
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2009, 49 (05): : 711 - 714
  • [33] Limit Chains on the Sierpinski Gasket
    Hinz, Michael
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (05) : 1797 - 1829
  • [34] Hausdorff measure of Sierpinski gasket
    Zuoling Zhou
    Science in China Series A: Mathematics, 1997, 40 : 1016 - 1021
  • [35] Extensions and their Minimizations on the Sierpinski Gasket
    Pak-Hin Li
    Nicholas Ryder
    Robert S. Strichartz
    Baris Evren Ugurcan
    Potential Analysis, 2014, 41 : 1167 - 1201
  • [36] Orthogonal Polynomials on the Sierpinski Gasket
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    Tuley, Elizabeth K.
    CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) : 311 - 340
  • [37] Energy and Laplacian on the Sierpinski gasket
    Teplyaev, A
    FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - ANALYSIS, NUMBER THEORY, AND DYNAMICAL SYSTEMS, PT 1, 2004, 72 : 131 - 154
  • [38] Hausdorff measure of Sierpinski gasket
    Zhou, ZL
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10): : 1016 - 1021
  • [39] Spanning forests on the Sierpinski gasket
    Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
    不详
    Discrete Mathematics and Theoretical Computer Science, 2008, 10 (02): : 55 - 76
  • [40] Fractal functions on the Sierpinski Gasket
    Ri, SongIl
    CHAOS SOLITONS & FRACTALS, 2020, 138