Fast and accurate modeling of molecular energies with machine learning

被引:0
|
作者
Rupp, Matthias [2 ]
Tkatchenko, Alexandre [3 ]
Mueller, Klaus-Robert [2 ]
von Lilienfeld, O. Anatole [1 ]
机构
[1] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA
[2] Tech Univ Berlin, Dept Software Engn & Comp Sci, Berlin, Germany
[3] Fritz Haber Inst, Dept Theory, Berlin, Germany
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
482-COMP
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Fast and Accurate Defects Detection for Additive Manufactured Parts by Multispectrum and Machine Learning
    Kong, Lingbao
    Peng, Xing
    Chen, Yao
    3D PRINTING AND ADDITIVE MANUFACTURING, 2023, 10 (03) : 393 - 405
  • [42] An extreme learning machine based fast and accurate adaptive distance relaying scheme
    Dubey, Rahul
    Samantaray, S. R.
    Panigrahi, B. K.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 73 : 1002 - 1014
  • [43] Towards a Fast and Accurate EIT Inverse Problem Solver: A Machine Learning Approach
    Fernandez-Fuentes, Xose
    Mera, David
    Gomez, Andres
    Vidal-Franco, Ignacio
    ELECTRONICS, 2018, 7 (12)
  • [44] Machine learning drives fast and accurate calibration of carbon nanotube contact parameters
    Gao, Chenyu
    Zhang, Xijun
    Chu, Dianming
    Bai, Wenjuan
    Liu, Mingrui
    Li, Yan
    He, Yan
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [45] Machine learning approach for fast and accurate prediction of optical properties of organic molecules
    Afzal, M. Atif
    Hachmann, Johannes
    Cheng, Chong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [46] Fast, accurate, automated small molecule force field parameterization by machine learning
    De Fabritiis, Gianni
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [47] Machine learning for accurate and fast bandgap prediction of solid-state materials
    Verma, Shomik
    Kajale, Shivam
    Gomez-Bombarelli, Rafael
    2022 IEEE HIGH PERFORMANCE EXTREME COMPUTING VIRTUAL CONFERENCE (HPEC), 2022,
  • [48] Refragmentation Through Machine Learning Classifier for Fast and Accurate Optical Proximity Correction
    Cho, Gangmin
    Kwon, Yonghwi
    Kim, Taeyoung
    Shin, Youngsoo
    DTCO AND COMPUTATIONAL PATTERNING, 2022, 12052
  • [49] Machine learning of accurate energy-conserving molecular force fields
    Chmiela, Stefan
    Tkatchenko, Alexandre
    Sauceda, Huziel E.
    Poltavsky, Igor
    Schuett, Kristof T.
    Mueller, Klaus-Robert
    SCIENCE ADVANCES, 2017, 3 (05):
  • [50] Open Boundary Modeling in Molecular Dynamics with Machine Learning
    Neumann, Philipp
    Wittmer, Niklas
    COMPUTATIONAL SCIENCE - ICCS 2020, PT VI, 2020, 12142 : 334 - 347