ON THE DIOPHANTINE EQUATION xm = yn1 + yn2 + ... + ynk

被引:1
|
作者
Yamada, Tomoihiro [1 ]
机构
[1] Kyoto Univ, Fac Sci, Dept Math, Kyoto 6068502, Japan
关键词
D O I
10.1017/S001708950800459X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find all solutions of x(m) = y(n1) +/- y(n2) +/- y(n3) +/- y(n4) integers m, n1, n2, n3, n4 for all relatively prime integers x, y, below 100.
引用
收藏
页码:143 / 148
页数:6
相关论文
共 50 条
  • [31] On the diophantine equation x2+2α5β13γ=yn
    Goins, Edray
    Luca, Florian
    Togbe, Alain
    ALGORITHMIC NUMBER THEORY, 2008, 5011 : 430 - +
  • [32] ON THE DIOPHANTINE EQUATION x2 + C=2yn
    Abu Muriefah, Fadwa S.
    Luca, Florian
    Siksek, Samir
    Tengely, Szabolcs
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (06) : 1117 - 1128
  • [33] On the exponential Diophantine equation x2+2a pb = yn
    Zhu, Huilin
    Le, Maohua
    Soydan, Gokhan
    Togbe, Alain
    PERIODICA MATHEMATICA HUNGARICA, 2015, 70 (02) : 233 - 247
  • [34] A note on the Diophantine equation (anxm±1)/(anx±1) = yn+1
    Luo, JG
    ACTA ARITHMETICA, 2001, 96 (03) : 223 - 229
  • [35] On the rational difference equation yn+1=A+yn-k/yn
    Saleh, M
    Aloqeili, M
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (02) : 862 - 869
  • [36] On the difference equation yn+1 = α+βe-yn/γ+yn-1
    Ozturk, I.
    Bozkurt, F.
    Ozen, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (02) : 1387 - 1393
  • [37] On the asymptotics of the difference equation yn(1+yn-1,yn-k+1) = yn-k
    Berg, Lothar
    Stevic, Stevo
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (04) : 577 - 586
  • [38] On the Diophantine equation x2+3a41b = yn
    Alan, Murat
    Zengin, Ugur
    PERIODICA MATHEMATICA HUNGARICA, 2020, 81 (02) : 284 - 291
  • [39] On the diophantine equation ax2+bm=4yn
    Arif, SA
    Al-Ali, AS
    ACTA ARITHMETICA, 2002, 103 (04) : 343 - 346
  • [40] ON THE DIOPHANTINE EQUATION x2+2a . 5b = yn
    Luca, Florian
    Togbe, Alain
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (06) : 973 - 979