Eigenvalue problems with indefinite weight

被引:0
|
作者
Szulkin, A [1 ]
Willem, M
机构
[1] Univ Stockholm, Dept Math, S-10691 Stockholm, Sweden
[2] Univ Catholique Louvain, Inst Math Pure & Appl, B-1348 Louvain, Belgium
关键词
eigenvalue problem; Laplacian; p-Laplacian; indefinite weight;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the linear eigenvalue problem -Delta u = lambda V(x)u, u is an element of D-0(1,2)(Omega), and its nonlinear generalization -Delta(p)u = lambda V(x)\u\(p-2)u, u is an element of D-0(1,p)(Omega). The set Omega need not be bounded, in particular, Omega = R-N is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence df eigenvalues lambda(n) --> infinity.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 50 条