TRUDINGER-TYPE INEQUALITIES IN MUSIELAK-ORLICZ SPACES

被引:0
|
作者
Ohno, Takao [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Oita Univ, Fac Educ, Dannoharu Oita 8701192, Japan
[2] Hiroshima Univ, Grad Sch Humanities & Social Sci, Dept Math, Higashihiroshima 7398524, Japan
来源
HOUSTON JOURNAL OF MATHEMATICS | 2022年 / 48卷 / 03期
关键词
Riesz potentials; Musielak-Orlicz spaces; Trudinger's inequality; metric measure space; lower Ahlfors regular; double phase functional; SOBOLEV SPACES; RIESZ-POTENTIALS; FUNCTIONALS; EMBEDDINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with Trudinger-type inequalities for variable Riesz potentials J(alpha(center dot),tau) f of functions in Musielak-Orlicz spaces L-Phi (X) over bounded metric measure spaces equipped with lower Ahlfors Q(x)-regular measures. As an application and example we obtain Trudinger's inequality for double phase functionals with variable exponents.
引用
收藏
页码:479 / 497
页数:19
相关论文
共 50 条
  • [31] The Daugavet property in the Musielak-Orlicz spaces
    Kaminska, Anna
    Kubiak, Damian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) : 873 - 898
  • [32] Musielak-Orlicz Campanato spaces and applications
    Liang, Yiyu
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (01) : 307 - 322
  • [33] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China Mathematics, 2019, 62 : 1567 - 1584
  • [34] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072
  • [35] ON MULTIFUNCTIONALS IN THE MUSIELAK-ORLICZ SPACES OF MULTIFUNCTIONS
    KASPERSKI, A
    MATHEMATISCHE NACHRICHTEN, 1994, 168 : 161 - 169
  • [36] Weak Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 195 - 253
  • [37] Martingale Musielak-Orlicz Hardy spaces
    Xie, Guangheng
    Jiao, Yong
    Yang, Dachun
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (08) : 1567 - 1584
  • [38] A COMBINATORIAL APPROACH TO MUSIELAK-ORLICZ SPACES
    Prochno, Joscha
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (01): : 132 - 141
  • [39] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China(Mathematics), 2019, 62 (08) : 1567 - 1584
  • [40] Smoothness of the Orlicz norm in Musielak-Orlicz function spaces
    Vigelis, Rui F.
    Cavaleante, Charles C.
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 1025 - 1041