Affine frame decompositions and shift-invariant spaces

被引:27
|
作者
Chui, CK
Sun, QY [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[2] Univ Missouri, Dept Math & Comp Sci, St Louis, MO 63121 USA
关键词
D O I
10.1016/j.acha.2005.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the property of tight affine frame decomposition of functions in L-2 can be extended in a stable way to functions in Sobolev spaces when the generators of the tight affine frames satisfy certain mild regularity and vanishing moment conditions. Applying the affine frame operators Q(j) on jth levels to any function f in a Sobolev space reveals the detailed information Q(j) f of f in such tight affine decompositions. We also study certain basic properties of the range of the affine frame operators Q(j) such as the topological property of closedness and the notion of angles between the ranges for different levels, and thus establishing some interesting connection to (tight) frames of shift-invariant spaces. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:74 / 107
页数:34
相关论文
共 50 条
  • [41] Dilates of shift-invariant spaces on local fields
    Behera, Biswaranjan
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 102 (3-4): : 261 - 284
  • [42] Sampling with Derivatives in Periodic Shift-Invariant Spaces
    Selvan, A. Antony
    Ghosh, Riya
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (13) : 1591 - 1615
  • [43] Nonuniform sampling and reconstruction in shift-invariant spaces
    Aldroubi, A
    Gröchenig, K
    SIAM REVIEW, 2001, 43 (04) : 585 - 620
  • [44] Sharp Sampling Theorems in Shift-invariant Spaces
    Groechenig, Karlheinz
    Romero, Jose Luis
    Stoeckler, Joachim
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 22 - 25
  • [45] Symmetric nearly shift-invariant tight frame wavelets
    Abdelnour, AF
    Selesnick, IW
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (01) : 231 - 239
  • [46] Wavelet decompositions of nonrefinable shift invariant spaces
    Dekel, S
    Leviatan, D
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 12 (02) : 230 - 258
  • [47] A Note on Shift-Invariant Spaces Admitting a Single Generator
    Jun Jian ZHAODepartment of MathematicsTianjin Polytechnic UniversityTianjin PRChinaCollege of Applied SciencesBeijing University of TechnologyBeijing PRChina
    数学研究与评论, 2011, 31 (01) : 123 - 128
  • [48] Average and Convolution Sampling over Shift-Invariant Spaces
    Devaraj Ponnaian
    Ankush Kumar Garg
    Yugesh Shanmugam
    Complex Analysis and Operator Theory, 2022, 16
  • [49] Uniqueness of STFT phase retrieval in shift-invariant spaces
    Li, Rui
    Liu, Bei
    Zhang, Qingyue
    APPLIED MATHEMATICS LETTERS, 2021, 118
  • [50] Sampling and Average Sampling in Quasi Shift-Invariant Spaces
    Kumar, Anuj
    Sampath, Sivananthan
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (10) : 1246 - 1271