Combining rough sets and data-driven fuzzy learning for generation of classification rules

被引:17
|
作者
Shen, Q [1 ]
Chouchoulas, A [1 ]
机构
[1] Univ Edinburgh, Div Informat, Sch Artificial Intelligence, Edinburgh EH1 1HN, Midlothian, Scotland
关键词
D O I
10.1016/S0031-3203(99)00099-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
[No abstract available]
引用
收藏
页码:2073 / 2076
页数:4
相关论文
共 50 条
  • [41] MAINTAINING DATA-DRIVEN RULES IN DATABASES
    GAL, A
    ETZION, O
    COMPUTER, 1995, 28 (01) : 28 - 38
  • [42] Adapting Fuzzy Rough Sets for Classification with Missing Values
    Lenz, Oliver Urs
    Peralta, Daniel
    Cornelis, Chris
    ROUGH SETS (IJCRS 2021), 2021, 12872 : 192 - 200
  • [43] Classification model based on rough and fuzzy sets theory
    Jirava, Pavel
    Jiri, Kkupka
    CIMMACS '07: PROCEEDINGS OF THE 6TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, 2007, : 199 - +
  • [44] Data-Driven Consensus Protocol Classification Using Machine Learning
    Marcozzi, Marco
    Filatovas, Ernestas
    Stripinis, Linas
    Paulavicius, Remigijus
    MATHEMATICS, 2024, 12 (02)
  • [45] Data-driven nonparametric tolerance sets
    Frey, Jesse
    JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (02) : 169 - 180
  • [46] A data-driven classification of feelings
    Thomson, David M. H.
    Crocker, Christopher
    FOOD QUALITY AND PREFERENCE, 2013, 27 (02) : 137 - 152
  • [47] Mining classification rules using rough sets and neural networks
    Li, RP
    Wang, ZO
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 157 (02) : 439 - 448
  • [48] Case generation using rough sets with fuzzy representation
    Pal, SK
    Mitra, P
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2004, 16 (03) : 292 - 300
  • [49] Data-driven assessment of electrode calendering process by combining experimental results, in silico mesostructures generation and machine learning
    Duquesnoy M.
    Lombardo T.
    Chouchane M.
    Primo E.N.
    Franco A.A.
    Journal of Power Sources, 2020, 480
  • [50] Towards Data-Driven Programming Problem Generation for Mastery Learning
    Lytle, Nicholas
    ICER '19 - PROCEEDINGS OF THE 2019 ACM CONFERENCE ON INTERNATIONAL COMPUTING EDUCATION RESEARCH, 2019, : 339 - 340