Attenuation of glucose transport across Caco-2 cell monolayers by a polyphenol-rich herbal extract: Interactions with SGLT1 and GLUT2 transporters

被引:56
|
作者
Farrell, Tracy L. [1 ]
Ellam, Samantha L. [1 ]
Forrelli, Taryn [2 ]
Williamson, Gary [1 ]
机构
[1] Univ Leeds, Sch Food Sci & Nutr, Leeds LS2 9JT, W Yorkshire, England
[2] New Chapter Inc, Inc Brattleboro, VT USA
关键词
glucose transporters; polyphenol; Caco-2; cells; diabetes; herbal; GASTROINTESTINAL HORMONE-SECRETION; LIFE-STYLE INTERVENTION; GLYCEMIC CONTROL; PLASMA-GLUCOSE; ANTIOXIDANT ACTIVITY; DIETARY POLYPHENOLS; CINNAMON EXTRACT; IN-VITRO; ACID; ABSORPTION;
D O I
10.1002/biof.1090
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previous studies have indicated that secondary plant metabolites may modulate glucose absorption in the small intestine. We have characterized a polyphenol-rich herbal extract and its potential intestinal metabolites by LC-MS2 and investigated the inhibition of glucose transporters SGLT1 and GLUT2 using the well-characterized Caco-2 intestinal model. Differentiated Caco-2 monolayers were incubated with an extract of a mixture of herbs and spices. Glucose transport under sodium-dependent and sodium-free conditions was determined by radiochemical detection of D-[U-C-14]-glucose. A 54% decrease in transport was observed compared to control. Using sodium-dependent and sodium-free conditions, we demonstrate that the inhibition of GLUT2 was greater than SGLT1. Glycosidase and esterase enzymatic hydrolysis was used to assess the impact of metabolism on the efficacy of inhibition. Glucose transport across the membrane was reduced by 70% compared to the control and was associated with significant increases in flavonoid aglycones, caffeic acid, and p-coumaric acid. These results suggest that intact and hydrolyzed polyphenols, likely to be found in the lumen after ingestion of the supplement, play an important role in the attenuation of glucose absorption and may have potentially beneficial antiglycemic effects in the body. (c) 2013 BioFactors, 39(4):448-456, 2013
引用
收藏
页码:448 / 456
页数:9
相关论文
共 50 条
  • [41] Effect of fatty acids on herbicide transport across Caco-2 cell monolayers
    Brand, RM
    Cetin, Y
    Mueller, C
    Cuppett, SL
    TOXICOLOGY IN VITRO, 2005, 19 (05) : 595 - 601
  • [42] Transcellular transport of domoic acid across intestinal Caco-2 cell monolayers
    Kimura, Osamu
    Kotaki, Yuichi
    Hamaue, Naoya
    Haraguchi, Koichi
    Endo, Tetsuya
    FOOD AND CHEMICAL TOXICOLOGY, 2011, 49 (09) : 2167 - 2171
  • [43] Enhancement of paracellular transport of heparin disaccharide across Caco-2 cell monolayers
    So Yean Cho
    Jong Sik Kim
    Hong Li
    Changkoo Shim
    Robert J. Linhardt
    Yeong Shik Kim
    Archives of Pharmacal Research, 2002, 25 : 86 - 92
  • [44] Determination of the stereoselectivity of chiral drug transport across Caco-2 cell monolayers
    He, Y
    Zeng, S
    CHIRALITY, 2006, 18 (01) : 64 - 69
  • [45] Transport of Hop Bitter Acids across Intestinal Caco-2 Cell Monolayers
    Cattoor, Ko
    Bracke, Marc
    Deforce, Dieter
    De Keukeleire, Denis
    Heyerick, Arne
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2010, 58 (07) : 4132 - 4140
  • [46] QUERCETIN DECREASES IRON TRANSPORT ACROSS INTESTINAL CACO-2 CELL MONOLAYERS
    Hoque, Rukshana
    Sharp, Paul
    AMERICAN JOURNAL OF HEMATOLOGY, 2013, 88 (05) : E195 - E195
  • [47] Characterization of the transport of uracil across Caco-2 and LLC-PK1 cell monolayers
    Li, H
    Chung, SJ
    Shim, CK
    PHARMACEUTICAL RESEARCH, 2002, 19 (10) : 1495 - 1501
  • [48] Characterization of the Transport of Uracil Across Caco-2 and LLC-PK1 Cell Monolayers
    Hong Li
    Suk-Jae Chung
    Chang-Koo Shim
    Pharmaceutical Research, 2002, 19 : 1495 - 1501
  • [49] Polyphenol-rich Aronia melanocarpa (chokeberry) extract regulates expression of cholesterol and lipid metabolism genes in Caco-2 cells
    Kim, Bohkyung
    Park, Youngki
    Taheri, Rod
    Kimball, Kerilyn
    Roto, Anna
    Lee, Jiyoung
    Bolling, Bradley
    FASEB JOURNAL, 2012, 26
  • [50] Inhibition of Glucose Transport by Tomatoside A, a Tomato Seed Steroidal Saponin, through the Suppression of GLUT2 Expression in Caco-2 Cells
    Li, Baorui
    Terazono, Yusuke
    Hirasaki, Naoto
    Tatemichi, Yuki
    Kinoshita, Emiko
    Obata, Akio
    Matsui, Toshiro
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (06) : 1428 - 1434