Myocardial Ischemia Detection using Hidden Markov Principal Component Analysis

被引:0
|
作者
Alvarez, M. [1 ]
Henao, R. [2 ]
Orozco, A. [1 ]
机构
[1] Univ Tecnol Pereira, Program Elect Engn, La Julita, Pereira, Colombia
[2] Univ Tecnol Pereira, Sch Elect Engn, Pereira, Colombia
关键词
Hidden Markov Model; Principal Component Analysis; Myocardial Ischemia;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper introduces a new temporal version of Principal Component Analysis by using a Hidden Markov Model in order to obtain optimized representations of observed data through time. The novelty of the proposed method consists mainly in the way in which a static dimensionality reduction technique has been combined with a classic mixture model in time, to enhance the capabilities of dimensionality reduction and classification of myocardial ischemia data. Experimental results show improvements in classification accuracies even with highly reduced representations.
引用
收藏
页码:99 / +
页数:3
相关论文
共 50 条
  • [41] Detection of Abnormal Cardiac Activity using Principal Component Analysis
    Greisas, Ariel
    Zlochiver, Sharon
    2014 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), VOL 41, 2014, 41 : 525 - 528
  • [42] Fault detection and estimation using kernel principal component analysis
    Kallas, Maya
    Mourot, Gilles
    Anani, Kwami
    Ragot, Jose
    Maquin, Didier
    IFAC PAPERSONLINE, 2017, 50 (01): : 1025 - 1030
  • [43] Online Damage Detection using Recursive Principal Component Analysis
    Bhowmik, B.
    Krishnan, M.
    Hazra, B.
    Pakrashi, V.
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 2108 - 2113
  • [44] Burst Detection in Water Networks Using Principal Component Analysis
    Palau, C. V.
    Arregui, F. J.
    Carlos, M.
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2012, 138 (01) : 47 - 54
  • [45] Multiuser Detection Using Hidden Markov Model
    Chen, Fangjiong
    Kwong, Sam
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (01) : 107 - 115
  • [46] Cough Detection Using Hidden Markov Models
    Teyhouee, Aydin
    Osgood, Nathaniel D.
    SOCIAL, CULTURAL, AND BEHAVIORAL MODELING, SBP-BRIMS 2019, 2019, 11549 : 266 - 276
  • [47] Natural movement generation using hidden Markov models and principal components
    Kwon, Junghyun
    Park, Frank C.
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (05): : 1184 - 1194
  • [48] Detection of Myocardial Ischemia with Hidden Semi-Markovian models
    Dumont, J.
    Carrault, G.
    Gomis, P.
    Wagner, G. S.
    Hernandez, A. I.
    CINC: 2009 36TH ANNUAL COMPUTERS IN CARDIOLOGY CONFERENCE, 2009, 36 : 121 - +
  • [49] Damage Detection using Principal Component Analysis based on Wavelet Ridges
    Gharibnezhad, F.
    Mujica, L. E.
    Rodellar, J.
    Fritzen, C. P.
    DAMAGE ASSESSMENT OF STRUCTURES X, PTS 1 AND 2, 2013, 569-570 : 916 - +
  • [50] Automated Detection and Localization of Genome Inversions using Principal Component Analysis
    Fallas-Moya, Fabian
    Nowling, Ronald J.
    Emrich, Scott
    Sadovnik, Amir
    2021 3RD IEEE INTERNATIONAL CONFERENCE ON BIOINSPIRED PROCESSING (BIP): A CLEI COSTA RICA 2021 EVENT, 2021,